RiSSNet: Contrastive Learning Network with a Relaxed Identity Sampling Strategy for Remote Sensing Image Semantic Segmentation

Remote. Sens. Pub Date : 2023-07-06 DOI:10.3390/rs15133427
Haifeng Li, Wenxuan Jing, Guo Wei, Kai Wu, Mingming Su, Lu Liu, Hao Wu, Penglong Li, J. Qi
{"title":"RiSSNet: Contrastive Learning Network with a Relaxed Identity Sampling Strategy for Remote Sensing Image Semantic Segmentation","authors":"Haifeng Li, Wenxuan Jing, Guo Wei, Kai Wu, Mingming Su, Lu Liu, Hao Wu, Penglong Li, J. Qi","doi":"10.3390/rs15133427","DOIUrl":null,"url":null,"abstract":"Contrastive learning techniques make it possible to pretrain a general model in a self-supervised paradigm using a large number of unlabeled remote sensing images. The core idea is to pull positive samples defined by data augmentation techniques closer together while pushing apart randomly sampled negative samples to serve as supervised learning signals. This strategy is based on the strict identity hypothesis, i.e., positive samples are strictly defined by each (anchor) sample’s own augmentation transformation. However, this leads to the over-instancing of the features learned by the model and the loss of the ability to fully identify ground objects. Therefore, we proposed a relaxed identity hypothesis governing the feature distribution of different instances within the same class of features. The implementation of the relaxed identity hypothesis requires the sampling and discrimination of the relaxed identical samples. In this study, to realize the sampling of relaxed identical samples under the unsupervised learning paradigm, the remote sensing image was used to show that nearby objects often present a large correlation; neighborhood sampling was carried out around the anchor sample; and the similarity between the sampled samples and the anchor samples was defined as the semantic similarity. To achieve sample discrimination under the relaxed identity hypothesis, the feature loss was calculated and reordered for the samples in the relaxed identical sample queue and the anchor samples, and the feature loss between the anchor samples and the sample queue was defined as the feature similarity. Through the sampling and discrimination of the relaxed identical samples, the leap from instance-level features to class-level features was achieved to a certain extent while enhancing the network’s invariant learning of features. We validated the effectiveness of the proposed method on three datasets, and our method achieved the best experimental results on all three datasets compared to six self-supervised methods.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contrastive learning techniques make it possible to pretrain a general model in a self-supervised paradigm using a large number of unlabeled remote sensing images. The core idea is to pull positive samples defined by data augmentation techniques closer together while pushing apart randomly sampled negative samples to serve as supervised learning signals. This strategy is based on the strict identity hypothesis, i.e., positive samples are strictly defined by each (anchor) sample’s own augmentation transformation. However, this leads to the over-instancing of the features learned by the model and the loss of the ability to fully identify ground objects. Therefore, we proposed a relaxed identity hypothesis governing the feature distribution of different instances within the same class of features. The implementation of the relaxed identity hypothesis requires the sampling and discrimination of the relaxed identical samples. In this study, to realize the sampling of relaxed identical samples under the unsupervised learning paradigm, the remote sensing image was used to show that nearby objects often present a large correlation; neighborhood sampling was carried out around the anchor sample; and the similarity between the sampled samples and the anchor samples was defined as the semantic similarity. To achieve sample discrimination under the relaxed identity hypothesis, the feature loss was calculated and reordered for the samples in the relaxed identical sample queue and the anchor samples, and the feature loss between the anchor samples and the sample queue was defined as the feature similarity. Through the sampling and discrimination of the relaxed identical samples, the leap from instance-level features to class-level features was achieved to a certain extent while enhancing the network’s invariant learning of features. We validated the effectiveness of the proposed method on three datasets, and our method achieved the best experimental results on all three datasets compared to six self-supervised methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RiSSNet:基于松弛身份采样策略的对比学习网络遥感图像语义分割
对比学习技术使得使用大量未标记的遥感图像在自监督范式中预训练一般模型成为可能。其核心思想是将由数据增强技术定义的正样本拉得更近,同时将随机抽样的负样本分开,作为监督学习信号。该策略基于严格同一性假设,即正样本由每个(锚)样本自身的增广变换严格定义。然而,这会导致模型学习的特征的过度实例化,并失去完全识别地面物体的能力。因此,我们提出了一个宽松的同一性假设来控制同一类特征中不同实例的特征分布。松弛同一性假设的实现需要对松弛的相同样本进行抽样和判别。在本研究中,为了实现无监督学习范式下松弛相同样本的采样,利用遥感图像显示附近物体往往呈现较大的相关性;在锚点样本周围进行邻域抽样;将采样样本与锚点样本的相似度定义为语义相似度。为了实现松弛同一性假设下的样本判别,计算松弛相同样本队列中样本与锚点样本的特征损失并重新排序,将锚点样本与样本队列之间的特征损失定义为特征相似性。通过对松弛的相同样本进行采样和判别,在一定程度上实现了从实例级特征到类级特征的跨越,同时增强了网络对特征的不变学习。我们在三个数据集上验证了所提出方法的有效性,与六种自监督方法相比,我们的方法在所有三个数据集上都取得了最好的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influences of Different Factors on Gravity Wave Activity in the Lower Stratosphere of the Indian Region Estimating Sugarcane Aboveground Biomass and Carbon Stock Using the Combined Time Series of Sentinel Data with Machine Learning Algorithms Dynamic Screening Strategy Based on Feature Graphs for UAV Object and Group Re-Identification The Expanding of Proglacial Lake Amplified the Frontal Ablation of Jiongpu Co Glacier since 1985 Investigation of Light-Scattering Properties of Non-Spherical Sea Salt Aerosol Particles at Varying Levels of Relative Humidity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1