Accelerating XML mining using graphic processors

S. Rathi, C. A. Dhote, Vivek Bangera
{"title":"Accelerating XML mining using graphic processors","authors":"S. Rathi, C. A. Dhote, Vivek Bangera","doi":"10.1109/ICCICCT.2014.6992945","DOIUrl":null,"url":null,"abstract":"Mining of association rules is an important research direction of data mining. Extensive use of XML on web makes it an interesting source for data extraction from large data sets. There is a growing demand for modern tools and technologies which can efficiently handle such large data. This paper proposes a collaborative approach to extract association rules from structured XML data with the help of cost effective and energy efficient Graphic Processors. The serial approach comprises of deserialization using XPath followed by parallel sorting. In the parallel model there is parallel deserialization of XML data with the help of graphic processor followed by sorting the converted XML data with the help of in-built multithreaded structure of GPU. An empirical performance study on synthetic data is given, demonstrating a remarkable speed increase on a GPU as compared with fully optimized CPU implementation.","PeriodicalId":6615,"journal":{"name":"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)","volume":"51 1","pages":"144-148"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICCT.2014.6992945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mining of association rules is an important research direction of data mining. Extensive use of XML on web makes it an interesting source for data extraction from large data sets. There is a growing demand for modern tools and technologies which can efficiently handle such large data. This paper proposes a collaborative approach to extract association rules from structured XML data with the help of cost effective and energy efficient Graphic Processors. The serial approach comprises of deserialization using XPath followed by parallel sorting. In the parallel model there is parallel deserialization of XML data with the help of graphic processor followed by sorting the converted XML data with the help of in-built multithreaded structure of GPU. An empirical performance study on synthetic data is given, demonstrating a remarkable speed increase on a GPU as compared with fully optimized CPU implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用图形处理器加速XML挖掘
关联规则挖掘是数据挖掘的一个重要研究方向。XML在web上的广泛使用使其成为从大型数据集中提取数据的有趣来源。人们对现代工具和技术的需求日益增长,这些工具和技术可以有效地处理如此大的数据。本文提出了一种协作的方法,在高效节能的图形处理器的帮助下,从结构化XML数据中提取关联规则。串行方法包括使用XPath进行反序列化,然后进行并行排序。在并行模型中,首先利用图形处理器对XML数据进行并行反序列化,然后利用GPU内置的多线程结构对转换后的XML数据进行排序。对合成数据的性能进行了实证研究,表明与完全优化的CPU实现相比,GPU上的速度有了显着的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adept spectral filter for fading nonisotropic channel model Received signal strength index estimation using Kalman Filter for fuzzy based transmission power control in wireless sensor networks An efficient scalar multiplication algorithm for ECC in WSNs An electrochemical DNA-Prussian blue-carbon paste biosensor for the detection of ascorbic acid in pharmaceuticals Implementing One Time Password based security mechanism for securing personal health records in cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1