Efficiency and precision trade-offs in graph summary algorithms

S. Campinas, Renaud Delbru, G. Tummarello
{"title":"Efficiency and precision trade-offs in graph summary algorithms","authors":"S. Campinas, Renaud Delbru, G. Tummarello","doi":"10.1145/2513591.2513654","DOIUrl":null,"url":null,"abstract":"In many applications, it is convenient to substitute a large data graph with a smaller homomorphic graph. This paper investigates approaches for summarising massive data graphs. In general, massive data graphs are processed using a shared-nothing infrastructure such as MapReduce. However, accurate graph summarisation algorithms are suboptimal for this kind of environment as they require multiple iterations over the data graph. We investigate approximate graph summarisation algorithms that are efficient to compute in a shared-nothing infrastructure. We define a quality assessment model of a summary with regards to a gold standard summary. We evaluate over several datasets the trade-offs between efficiency and precision of the algorithms. With regards to an application, experiments highlight the need to trade-off the precision and volume of a graph summary with the complexity of a summarisation technique.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"26 1","pages":"38-47"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2513591.2513654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

In many applications, it is convenient to substitute a large data graph with a smaller homomorphic graph. This paper investigates approaches for summarising massive data graphs. In general, massive data graphs are processed using a shared-nothing infrastructure such as MapReduce. However, accurate graph summarisation algorithms are suboptimal for this kind of environment as they require multiple iterations over the data graph. We investigate approximate graph summarisation algorithms that are efficient to compute in a shared-nothing infrastructure. We define a quality assessment model of a summary with regards to a gold standard summary. We evaluate over several datasets the trade-offs between efficiency and precision of the algorithms. With regards to an application, experiments highlight the need to trade-off the precision and volume of a graph summary with the complexity of a summarisation technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图摘要算法中效率和精度的权衡
在许多应用中,用较小的同态图代替较大的数据图是很方便的。本文研究了海量数据图的总结方法。一般来说,大量数据图是使用无共享的基础设施(如MapReduce)处理的。然而,对于这种环境,精确的图摘要算法不是最优的,因为它们需要对数据图进行多次迭代。我们研究了在无共享基础设施中有效计算的近似图形摘要算法。我们根据金标准摘要定义了摘要的质量评估模型。我们在几个数据集上评估了算法的效率和精度之间的权衡。在应用程序方面,实验强调需要权衡图形摘要的精度和体积与摘要技术的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method combining improved Mahalanobis distance and adversarial autoencoder to detect abnormal network traffic Proceedings of the International Database Engineered Applications Symposium Conference, IDEAS 2023, Heraklion, Crete, Greece, May 5-7, 2023 IDEAS'22: International Database Engineered Applications Symposium, Budapest, Hungary, August 22 - 24, 2022 IDEAS 2021: 25th International Database Engineering & Applications Symposium, Montreal, QC, Canada, July 14-16, 2021 IDEAS 2020: 24th International Database Engineering & Applications Symposium, Seoul, Republic of Korea, August 12-14, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1