Estimation model for enhanced predictive object point metric in OO software size estimation using deep learning

Vijay Yadav, Raghuraj Singh, Vibhash Yadav
{"title":"Estimation model for enhanced predictive object point metric in OO software size estimation using deep learning","authors":"Vijay Yadav, Raghuraj Singh, Vibhash Yadav","doi":"10.34028/iajit/20/3/1","DOIUrl":null,"url":null,"abstract":"The Software industry’s rapid growth contributes to the need for new technologies. PRICE software system uses Predictive Object Point (POP) as a size measure to estimate Effort and cost. A refined POP metric value for object-oriented software written in Java can be calculated using the Automated POP Analysis tool. This research used 25 open-source Java projects. The refined POP metric improves the drawbacks of the PRICE system and gives a more accurate size measure of software. This paper uses refined POP metrics with curve-fitting neural networks and multi-layer perceptron neural network-based deep learning to estimate the software development effort. Results show that this approach gives an effort estimate closer to the actual Effort obtained through Constructive Cost Estimation Model (COCOMO) estimation models and thus validates refined POP as a better size measure of object-oriented software than POP. Therefore we consider the MLP approach to help construct the metric for the scale of the Object-Oriented (OO) model system.","PeriodicalId":13624,"journal":{"name":"Int. Arab J. Inf. Technol.","volume":"14 1","pages":"293-302"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. Arab J. Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/20/3/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Software industry’s rapid growth contributes to the need for new technologies. PRICE software system uses Predictive Object Point (POP) as a size measure to estimate Effort and cost. A refined POP metric value for object-oriented software written in Java can be calculated using the Automated POP Analysis tool. This research used 25 open-source Java projects. The refined POP metric improves the drawbacks of the PRICE system and gives a more accurate size measure of software. This paper uses refined POP metrics with curve-fitting neural networks and multi-layer perceptron neural network-based deep learning to estimate the software development effort. Results show that this approach gives an effort estimate closer to the actual Effort obtained through Constructive Cost Estimation Model (COCOMO) estimation models and thus validates refined POP as a better size measure of object-oriented software than POP. Therefore we consider the MLP approach to help construct the metric for the scale of the Object-Oriented (OO) model system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的面向对象软件尺寸估计中增强预测对象点度量的估计模型
软件行业的快速发展促进了对新技术的需求。PRICE软件系统使用预测对象点(POP)作为衡量工作量和成本的尺度。用Java编写的面向对象软件的精细化的POP度量值可以使用自动化POP分析工具计算。这项研究使用了25个开源Java项目。改进的POP度量改善了PRICE系统的缺点,并提供了更准确的软件尺寸度量。本文使用精细的POP指标与曲线拟合神经网络和多层感知器神经网络为基础的深度学习来估计软件开发的工作量。结果表明,该方法给出的工作量估计更接近于通过建设性成本估算模型(COCOMO)估算模型获得的实际工作量,从而验证了改进的POP是比POP更好的面向对象软件的大小度量。因此,我们考虑使用MLP方法来帮助构建面向对象(OO)模型系统规模的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Energy Efficient Harvesting Technique for SDWSN using RF Transmitters with MISO Beamforming Incorporating triple attention and multi-scale pyramid network for underwater image enhancement Generative adversarial networks with data augmentation and multiple penalty areas for image synthesis MAPNEWS: a framework for aggregating and organizing online news articles Deep learning based mobilenet and multi-head attention model for facial expression recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1