Generic recognition of articulated objects by reasoning about functionality

Kevin Green, D. Eggert, L. Stark, K. Bowyer
{"title":"Generic recognition of articulated objects by reasoning about functionality","authors":"Kevin Green, D. Eggert, L. Stark, K. Bowyer","doi":"10.1109/ICPR.1994.576467","DOIUrl":null,"url":null,"abstract":"Previous work on the recognition of objects by reasoning about their functionality has not dealt with objects that have moving parts. In this paper we introduce a scenario in which object recognition is accomplished by first deriving an articulated shape model from an observed sequence of 3-D shapes and by then reasoning about the possible functionality of the articulated shape model.","PeriodicalId":74516,"journal":{"name":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","volume":"27 1","pages":"847-849"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IAPR International Conference on Pattern Recognition. International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Previous work on the recognition of objects by reasoning about their functionality has not dealt with objects that have moving parts. In this paper we introduce a scenario in which object recognition is accomplished by first deriving an articulated shape model from an observed sequence of 3-D shapes and by then reasoning about the possible functionality of the articulated shape model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过对功能的推理对铰接物体进行一般识别
以前通过推理物体的功能来识别物体的工作并没有处理具有运动部件的物体。在本文中,我们介绍了一种场景,在该场景中,通过首先从观察到的3d形状序列中导出铰接形状模型,然后对铰接形状模型的可能功能进行推理,从而完成对象识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Complexity of Representations in Deep Learning Extraction of Ruler Markings For Estimating Physical Size of Oral Lesions. TensorMixup Data Augmentation Method for Fully Automatic Brain Tumor Segmentation Classifying Breast Histopathology Images with a Ductal Instance-Oriented Pipeline. Directionally Paired Principal Component Analysis for Bivariate Estimation Problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1