A hybrid optoelectronic Mott insulator

Henry Navarro, J. D. Valle, Y. Kalcheim, N. Vargas, C. Adda, Min-Han Lee, P. Lapa, A. Rivera‐Calzada, I. Zaluzhnyy, Erbin Qiu, O. Shpyrko, M. Rozenberg, A. Frano, I. Schuller
{"title":"A hybrid optoelectronic Mott insulator","authors":"Henry Navarro, J. D. Valle, Y. Kalcheim, N. Vargas, C. Adda, Min-Han Lee, P. Lapa, A. Rivera‐Calzada, I. Zaluzhnyy, Erbin Qiu, O. Shpyrko, M. Rozenberg, A. Frano, I. Schuller","doi":"10.1063/5.0044066","DOIUrl":null,"url":null,"abstract":"The coupling of electronic degrees of freedom in materials to create hybridized functionalities is a holy grail of modern condensed matter physics that may produce novel mechanisms of control. Correlated electron systems often exhibit coupled degrees of freedom with a high degree of tunability which sometimes lead to hybridized functionalities based on external stimuli. However, the mechanisms of tunability and the sensitivity to external stimuli are determined by intrinsic material properties which are not always controllable. A Mott metal-insulator transition, which is technologically attractive due to the large changes in resistance, can be tuned by doping, strain, electric fields, and orbital occupancy but cannot be, in and of itself, controlled externally with light. Here we present a new approach to produce hybridized functionalities using a properly engineered photoconductor/strongly-correlated hybrid heterostructure, showing control of the Metal-to-Insulator transition (MIT) using optical means. This approach combines a photoconductor, which does not exhibit an MIT, with a strongly correlated oxide, which is not photoconducting. Due to the close proximity between the two materials, the heterostructure exhibits large volatile and nonvolatile, photoinduced resistivity changes and substantial photoinduced shifts in the MIT transition temperatures. This approach can potentially be extended to other judiciously chosen combinations of strongly correlated materials with systems which exhibit optically, electrically or magnetically controllable behavior.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0044066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The coupling of electronic degrees of freedom in materials to create hybridized functionalities is a holy grail of modern condensed matter physics that may produce novel mechanisms of control. Correlated electron systems often exhibit coupled degrees of freedom with a high degree of tunability which sometimes lead to hybridized functionalities based on external stimuli. However, the mechanisms of tunability and the sensitivity to external stimuli are determined by intrinsic material properties which are not always controllable. A Mott metal-insulator transition, which is technologically attractive due to the large changes in resistance, can be tuned by doping, strain, electric fields, and orbital occupancy but cannot be, in and of itself, controlled externally with light. Here we present a new approach to produce hybridized functionalities using a properly engineered photoconductor/strongly-correlated hybrid heterostructure, showing control of the Metal-to-Insulator transition (MIT) using optical means. This approach combines a photoconductor, which does not exhibit an MIT, with a strongly correlated oxide, which is not photoconducting. Due to the close proximity between the two materials, the heterostructure exhibits large volatile and nonvolatile, photoinduced resistivity changes and substantial photoinduced shifts in the MIT transition temperatures. This approach can potentially be extended to other judiciously chosen combinations of strongly correlated materials with systems which exhibit optically, electrically or magnetically controllable behavior.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种混合光电莫特绝缘体
材料中电子自由度的耦合以创造杂化功能是现代凝聚态物理学的圣杯,它可能产生新的控制机制。相关电子系统通常表现出具有高度可调性的耦合自由度,这有时会导致基于外部刺激的杂化功能。然而,可调性的机制和对外部刺激的敏感性是由材料的固有特性决定的,而这些特性并不总是可控的。Mott金属-绝缘体转变,由于电阻的巨大变化,在技术上很有吸引力,可以通过掺杂、应变、电场和轨道占用来调节,但本身不能用光来控制外部。在这里,我们提出了一种使用适当设计的光导体/强相关杂化异质结构产生杂化功能的新方法,显示了使用光学手段控制金属到绝缘体的转变(MIT)。这种方法结合了不表现出MIT的光导体和不具有光导电性的强相关氧化物。由于两种材料之间的距离很近,异质结构表现出较大的挥发性和非挥发性,光致电阻率变化和大量的MIT转变温度的光致位移。这种方法可以潜在地扩展到其他明智地选择强相关材料与表现出光学、电或磁可控行为的系统的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance photonic microwave filters based on a 50GHz FSR optical soliton crystal Kerr micro-comb Ultra-high bandwidth fiber-optic data transmission with a single chip source High order pulse-echo (HOPE) ultrasound Data-driven modelling of scalable spinodoid structures for energy absorption Radioplasmonics: design of plasmonic milli-particles in air and absorbing media for antenna communication and human-body in-vivo applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1