{"title":"Real-Time Path-Constrained Trajectory Tracking for Robot Manipulators with Energy Budget Optimization","authors":"Danilo V. Cunha, F. Lizarralde","doi":"10.1109/COASE.2019.8842946","DOIUrl":null,"url":null,"abstract":"This paper considers the pathconstrained trajectory tracking for robot manipulators optimizing a limited energy budget. The proposed strategy is based on a Nonlinear Receding Horizon Predictive Control (NRHPC) using a path parameterization of dimension one. The dynamic of the parameterized trajectory is governed by a predefined linear system, then an energy and a cost functions are defined and a NRHPC based on a Newton method is used to minimize the cost function in real time. The method is presented in both joint and task space. The proposed solution is verified on a 4 DOF manipulator with successful simulation and experimental results.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"151 1","pages":"1327-1332"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8842946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers the pathconstrained trajectory tracking for robot manipulators optimizing a limited energy budget. The proposed strategy is based on a Nonlinear Receding Horizon Predictive Control (NRHPC) using a path parameterization of dimension one. The dynamic of the parameterized trajectory is governed by a predefined linear system, then an energy and a cost functions are defined and a NRHPC based on a Newton method is used to minimize the cost function in real time. The method is presented in both joint and task space. The proposed solution is verified on a 4 DOF manipulator with successful simulation and experimental results.