Chemical reaction kinetic perspective with mesoscopic nonequilibrium thermodynamics

Q4 Engineering 复杂系统与复杂性科学 Pub Date : 2016-05-24 DOI:10.1142/9789813239609_0011
H. Qian
{"title":"Chemical reaction kinetic perspective with mesoscopic nonequilibrium thermodynamics","authors":"H. Qian","doi":"10.1142/9789813239609_0011","DOIUrl":null,"url":null,"abstract":"We distinguish a mechanical representation of the world in terms of point masses with positions and momenta and the chemical representation of the world in terms of populations of different individuals, each with intrinsic stochasticity, but population wise with statistical rate laws in their syntheses, degradations, spatial diffusion, individual state transitions, and interactions. Such a formal kinetic system in a small volume $V$, like a single cell, can be rigorously treated in terms of a Markov process describing its nonlinear kinetics as well as nonequilibrium thermodynamics at a mesoscopic scale. We introduce notions such as open, driven chemical systems, entropy production, free energy dissipation, etc. Then in the macroscopic limit, we illustrate how two new \"laws\", in terms of a generalized free energy of the mesoscopic stochastic dynamics, emerge. Detailed balance and complex balance are two special classes of \"simple\" nonlinear kinetics. Phase transition is intrinsically related to multi-stability and saddle-node bifurcation phenomenon, in the limits of time $t\\rightarrow\\infty$ and system's size $V\\rightarrow\\infty$. Using this approach, we re-articulate the notion of inanimate equilibrium branch of a system and nonequilibrium state of a living matter, as originally proposed by Nicolis and Prigogine, and seek a logic consistency between this viewpoint and that of P. W. Anderson and J. J. Hopfield's in which macroscopic law emerges through symmetry breaking.","PeriodicalId":38342,"journal":{"name":"复杂系统与复杂性科学","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统与复杂性科学","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1142/9789813239609_0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 9

Abstract

We distinguish a mechanical representation of the world in terms of point masses with positions and momenta and the chemical representation of the world in terms of populations of different individuals, each with intrinsic stochasticity, but population wise with statistical rate laws in their syntheses, degradations, spatial diffusion, individual state transitions, and interactions. Such a formal kinetic system in a small volume $V$, like a single cell, can be rigorously treated in terms of a Markov process describing its nonlinear kinetics as well as nonequilibrium thermodynamics at a mesoscopic scale. We introduce notions such as open, driven chemical systems, entropy production, free energy dissipation, etc. Then in the macroscopic limit, we illustrate how two new "laws", in terms of a generalized free energy of the mesoscopic stochastic dynamics, emerge. Detailed balance and complex balance are two special classes of "simple" nonlinear kinetics. Phase transition is intrinsically related to multi-stability and saddle-node bifurcation phenomenon, in the limits of time $t\rightarrow\infty$ and system's size $V\rightarrow\infty$. Using this approach, we re-articulate the notion of inanimate equilibrium branch of a system and nonequilibrium state of a living matter, as originally proposed by Nicolis and Prigogine, and seek a logic consistency between this viewpoint and that of P. W. Anderson and J. J. Hopfield's in which macroscopic law emerges through symmetry breaking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
介观非平衡热力学的化学反应动力学观点
我们根据具有位置和动量的点质量来区分世界的机械表示,以及根据不同个体的种群来区分世界的化学表示,每个个体都具有内在的随机性,但种群在它们的合成、退化、空间扩散、个体状态转换和相互作用中具有统计速率定律。这样一个小体积$V$的形式动力学系统,就像单个细胞一样,可以用描述其非线性动力学和介观尺度上的非平衡热力学的马尔可夫过程来严格处理。我们介绍了开放、驱动的化学系统、熵产生、自由能量耗散等概念。然后,在宏观极限下,我们说明了如何以介观随机动力学的广义自由能的形式出现两个新的“定律”。精细平衡和复杂平衡是“简单”非线性动力学的两种特殊类型。在时间$t\rightarrow\infty$和系统尺寸$V\rightarrow\infty$的限制下,相变与多稳定性和鞍节点分岔现象有着内在的联系。利用这种方法,我们重新阐述了Nicolis和Prigogine最初提出的系统的无生命平衡分支和生命物质的非平衡状态的概念,并寻求这一观点与P. W. Anderson和J. J. Hopfield的观点之间的逻辑一致性,其中宏观规律通过对称破缺出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
复杂系统与复杂性科学
复杂系统与复杂性科学 Engineering-Control and Systems Engineering
CiteScore
0.80
自引率
0.00%
发文量
891
期刊介绍:
期刊最新文献
Biorhythms and the brain Mesoscale simulations of complex fluids FRONT MATTER Metabolic pathways and optimisation Complex dynamics of deterministic nonlinear systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1