Optimizing a UAV-based Emergency Medical Service Network for Trauma Injury Patients*

Ruijiu Mao, Bin Du, Dengfeng Sun, N. Kong
{"title":"Optimizing a UAV-based Emergency Medical Service Network for Trauma Injury Patients*","authors":"Ruijiu Mao, Bin Du, Dengfeng Sun, N. Kong","doi":"10.1109/COASE.2019.8843138","DOIUrl":null,"url":null,"abstract":"Emergency medical service must be time sensitive. However, in many cases, satisfactory service cannot be ensured due to inconvenient logistics. For its easily deployable and widely accessible nature, unmanned aerial vehicles (UAVs) have the potential to improve the service, especially in areas that are traditionally under-served. In this paper, we develop a service network optimization problem for locating UAV bases, staffing a UAV fleet at each constructed base, and zoning demand nodes. We formulate a location-allocation optimization model with numerically simulated waiting times for the service zones as the objective. We adapt a genetic algorithm to solve the optimization model. We test our network optimization approach on instances of traumatic injury cases. By comparing our approach to a two-phase method in Boutilier et al. [1], we suggest an up to 60% reduction in mean waiting time.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"8 1","pages":"721-726"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8843138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Emergency medical service must be time sensitive. However, in many cases, satisfactory service cannot be ensured due to inconvenient logistics. For its easily deployable and widely accessible nature, unmanned aerial vehicles (UAVs) have the potential to improve the service, especially in areas that are traditionally under-served. In this paper, we develop a service network optimization problem for locating UAV bases, staffing a UAV fleet at each constructed base, and zoning demand nodes. We formulate a location-allocation optimization model with numerically simulated waiting times for the service zones as the objective. We adapt a genetic algorithm to solve the optimization model. We test our network optimization approach on instances of traumatic injury cases. By comparing our approach to a two-phase method in Boutilier et al. [1], we suggest an up to 60% reduction in mean waiting time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无人机的创伤损伤应急医疗服务网络优化研究*
紧急医疗服务必须具有时效性。然而,在很多情况下,由于物流不便,无法保证满意的服务。由于其易于部署和广泛访问的性质,无人机(uav)具有改善服务的潜力,特别是在传统上服务不足的地区。本文研究了无人机基地定位、无人机机群配置、需求节点划分等服务网络优化问题。以数值模拟服务区等待时间为目标,建立了服务区位置分配优化模型。采用遗传算法对优化模型进行求解。我们在创伤性损伤案例中测试了我们的网络优化方法。通过将我们的方法与Boutilier等人[1]的两阶段方法进行比较,我们建议将平均等待时间减少60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A proposed mapping method for aligning machine execution data to numerical control code optimizing outpatient Department Staffing Level using Multi-Fidelity Models Advanced Sensor and Target Development to Support Robot Accuracy Degradation Assessment Multi-Task Hierarchical Imitation Learning for Home Automation Deep Reinforcement Learning of Robotic Precision Insertion Skill Accelerated by Demonstrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1