AutoConfig: Automatic Configuration Tuning for Distributed Message Systems

Liang Bao, Xin Liu, Ziheng Xu, Baoyin Fang
{"title":"AutoConfig: Automatic Configuration Tuning for Distributed Message Systems","authors":"Liang Bao, Xin Liu, Ziheng Xu, Baoyin Fang","doi":"10.1145/3238147.3238175","DOIUrl":null,"url":null,"abstract":"Distributed message systems (DMSs) serve as the communication backbone for many real-time streaming data processing applications. To support the vast diversity of such applications, DMSs provide a large number of parameters to configure. However, It overwhelms for most users to configure these parameters well for better performance. Although many automatic configuration approaches have been proposed to address this issue, critical challenges still remain: 1) to train a better and robust performance prediction model using a limited number of samples, and 2) to search for a high-dimensional parameter space efficiently within a time constraint. In this paper, we propose AutoConfig – an automatic configuration system that can optimize producer-side throughput on DMSs. AutoConfig constructs a novel comparison-based model (CBM) that is more robust that the prediction-based model (PBM) used by previous learning-based approaches. Furthermore, AutoConfig uses a weighted Latin hypercube sampling (wLHS) approach to select a set of samples that can provide a better coverage over the high-dimensional parameter space. wLHS allows AutoConfig to search for more promising configurations using the trained CBM. We have implemented AutoConfig on the Kafka platform, and evaluated it using eight different testing scenarios deployed on a public cloud. Experimental results show that our CBM can obtain better results than that of PBM under the same random forests based model. Furthermore, AutoConfig outperforms default configurations by 215.40% on average, and five state-of-the-art configuration algorithms by 7.21%-64.56%.","PeriodicalId":6622,"journal":{"name":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"68 1","pages":"29-40"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3238147.3238175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Distributed message systems (DMSs) serve as the communication backbone for many real-time streaming data processing applications. To support the vast diversity of such applications, DMSs provide a large number of parameters to configure. However, It overwhelms for most users to configure these parameters well for better performance. Although many automatic configuration approaches have been proposed to address this issue, critical challenges still remain: 1) to train a better and robust performance prediction model using a limited number of samples, and 2) to search for a high-dimensional parameter space efficiently within a time constraint. In this paper, we propose AutoConfig – an automatic configuration system that can optimize producer-side throughput on DMSs. AutoConfig constructs a novel comparison-based model (CBM) that is more robust that the prediction-based model (PBM) used by previous learning-based approaches. Furthermore, AutoConfig uses a weighted Latin hypercube sampling (wLHS) approach to select a set of samples that can provide a better coverage over the high-dimensional parameter space. wLHS allows AutoConfig to search for more promising configurations using the trained CBM. We have implemented AutoConfig on the Kafka platform, and evaluated it using eight different testing scenarios deployed on a public cloud. Experimental results show that our CBM can obtain better results than that of PBM under the same random forests based model. Furthermore, AutoConfig outperforms default configurations by 215.40% on average, and five state-of-the-art configuration algorithms by 7.21%-64.56%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoConfig:分布式消息系统的自动配置调优
分布式消息系统(dms)是许多实时流数据处理应用程序的通信骨干。为了支持各种各样的应用程序,dms提供了大量的参数进行配置。然而,对于大多数用户来说,要配置好这些参数以获得更好的性能是很困难的。尽管已经提出了许多自动配置方法来解决这个问题,但仍然存在关键挑战:1)使用有限数量的样本训练更好和鲁棒的性能预测模型;2)在时间限制内有效地搜索高维参数空间。在本文中,我们提出了AutoConfig -一个自动配置系统,可以优化dms上的生产端吞吐量。AutoConfig构建了一种新的基于比较的模型(CBM),它比以前基于学习的方法使用的基于预测的模型(PBM)更健壮。此外,AutoConfig使用加权拉丁超立方体采样(wLHS)方法来选择一组样本,这些样本可以在高维参数空间上提供更好的覆盖。wLHS允许AutoConfig使用训练好的CBM搜索更有希望的配置。我们已经在Kafka平台上实现了AutoConfig,并使用部署在公共云上的八个不同测试场景对其进行了评估。实验结果表明,在相同的基于随机森林的模型下,我们的CBM比PBM获得了更好的结果。此外,AutoConfig的性能比默认配置平均高出215.40%,五种最先进的配置算法的性能高出7.21%-64.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatically Testing Implementations of Numerical Abstract Domains Self-Protection of Android Systems from Inter-component Communication Attacks Characterizing the Natural Language Descriptions in Software Logging Statements DroidMate-2: A Platform for Android Test Generation CPA-SymExec: Efficient Symbolic Execution in CPAchecker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1