Modelling of S&P 500 Index Price Based on U.S. Economic Indicators: Machine Learning Approach

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2021-10-28 DOI:10.5755/j01.ee.32.4.27985
Ligita Gasparėnienė, Rita Remeikienė, Aleksejus Sosidko, Vigita Vėbraitė
{"title":"Modelling of S&P 500 Index Price Based on U.S. Economic Indicators: Machine Learning Approach","authors":"Ligita Gasparėnienė, Rita Remeikienė, Aleksejus Sosidko, Vigita Vėbraitė","doi":"10.5755/j01.ee.32.4.27985","DOIUrl":null,"url":null,"abstract":"In order to forecast stock prices based on economic indicators, many studies have been conducted using well-known statistical methods. Meanwhile, since ~2010 as the power of computers improved, new methods of machine learning began to be used. It would be interesting to know how those algorithms using a variety of mathematical and statistical methods, are able to predict the stock market. The purpose of this article is to model the monthly price of the S&P 500 index based on U.S. economic indicators using statistical, machine learning, deep learning approaches and finally compare metrics of those models. After the selection of indicators according to the data visualization, multicollinearity tests, statistical significance tests, 3 out of 27 indicators remained. The main finding of the research is that the authors improved the baseline statistical linear regression model by 19 percent using a ML Random Forest algorithm. In this way, model achieved accuracy 97.68% of prediction S&P 500 index.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.5755/j01.ee.32.4.27985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

In order to forecast stock prices based on economic indicators, many studies have been conducted using well-known statistical methods. Meanwhile, since ~2010 as the power of computers improved, new methods of machine learning began to be used. It would be interesting to know how those algorithms using a variety of mathematical and statistical methods, are able to predict the stock market. The purpose of this article is to model the monthly price of the S&P 500 index based on U.S. economic indicators using statistical, machine learning, deep learning approaches and finally compare metrics of those models. After the selection of indicators according to the data visualization, multicollinearity tests, statistical significance tests, 3 out of 27 indicators remained. The main finding of the research is that the authors improved the baseline statistical linear regression model by 19 percent using a ML Random Forest algorithm. In this way, model achieved accuracy 97.68% of prediction S&P 500 index.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于美国经济指标的标准普尔500指数价格建模:机器学习方法
为了根据经济指标预测股票价格,许多研究使用了众所周知的统计方法。与此同时,自2010年以来,随着计算机能力的提高,机器学习的新方法开始被使用。了解这些算法如何使用各种数学和统计方法来预测股票市场将是一件有趣的事情。本文的目的是利用统计学、机器学习和深度学习方法,基于美国经济指标对标准普尔500指数的月度价格进行建模,并最终比较这些模型的指标。经数据可视化、多重共线性检验、统计显著性检验后,27项指标中剩余3项。该研究的主要发现是,作者使用ML随机森林算法将基线统计线性回归模型提高了19%。这样,模型预测标准普尔500指数的准确率达到了97.68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1