{"title":"Counterdiabatic control of transport in a synthetic tight-binding lattice","authors":"E. Meier, K. Ngan, Dries Sels, B. Gadway","doi":"10.1103/PHYSREVRESEARCH.2.043201","DOIUrl":null,"url":null,"abstract":"Quantum state transformations that are robust to experimental imperfections are important for applications in quantum information science and quantum sensing. Counterdiabatic (CD) approaches, which use knowledge of the underlying system Hamiltonian to actively correct for diabatic effects, are powerful tools for achieving simultaneously fast and stable state transformations. Protocols for CD driving have thus far been limited in their experimental implementation to discrete systems with just two or three levels, as well as bulk systems with scaling symmetries. Here, we extend the tool of CD control to a discrete synthetic lattice system composed of as many as nine sites. Although this system has a vanishing gap and thus no adiabatic support in the thermodynamic limit, we show that CD approaches can still give a substantial, several order-of-magnitude, improvement in fidelity over naive, fast adiabatic protocols.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.2.043201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Quantum state transformations that are robust to experimental imperfections are important for applications in quantum information science and quantum sensing. Counterdiabatic (CD) approaches, which use knowledge of the underlying system Hamiltonian to actively correct for diabatic effects, are powerful tools for achieving simultaneously fast and stable state transformations. Protocols for CD driving have thus far been limited in their experimental implementation to discrete systems with just two or three levels, as well as bulk systems with scaling symmetries. Here, we extend the tool of CD control to a discrete synthetic lattice system composed of as many as nine sites. Although this system has a vanishing gap and thus no adiabatic support in the thermodynamic limit, we show that CD approaches can still give a substantial, several order-of-magnitude, improvement in fidelity over naive, fast adiabatic protocols.