{"title":"Study of wireless power transfer link with metallic plates","authors":"Jing Ma, Sheng Sun, Changjun Liu","doi":"10.1109/IMWS-BIO.2013.6756162","DOIUrl":null,"url":null,"abstract":"In this paper, the wireless power transfer link with metallic plates is studied. By enforcing the boundary conditions along metallic surface, the magnetic fields are well confined between two plates and its flux focusing can be also improved. Meanwhile, the large metallic plates can also help to achieve higher transfer efficiency of the wireless power transfer link. Based on the filter theory, these enhanced field intensity effectively enlarge the dynamic range of coupling degree, thus improving the efficiency of the energy transmission. Finally, a 40.68MHz wireless transfer link with the highest measured efficiency of 86.56% is obtained and demonstrated.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"140 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, the wireless power transfer link with metallic plates is studied. By enforcing the boundary conditions along metallic surface, the magnetic fields are well confined between two plates and its flux focusing can be also improved. Meanwhile, the large metallic plates can also help to achieve higher transfer efficiency of the wireless power transfer link. Based on the filter theory, these enhanced field intensity effectively enlarge the dynamic range of coupling degree, thus improving the efficiency of the energy transmission. Finally, a 40.68MHz wireless transfer link with the highest measured efficiency of 86.56% is obtained and demonstrated.