Identifying Human Emotions from Facial Expressions with Deep Learning

Phavish Babajee, Geerish Suddul, S. Armoogum, Ravi Foogooa
{"title":"Identifying Human Emotions from Facial Expressions with Deep Learning","authors":"Phavish Babajee, Geerish Suddul, S. Armoogum, Ravi Foogooa","doi":"10.1109/ZINC50678.2020.9161445","DOIUrl":null,"url":null,"abstract":"The identification of facial expressions that reveal human emotions can help computers to better assess the human state of mind, so as to provide a more customized interaction. We explore the recognition of human facial expressions through a deep learning approach using a Convolutional Neural Network (CNN) algorithm. The system uses a labelled data set containing around 32,298 images with multiple facial expressions for training and testing. The pre-training phase involves a face detection subsystem with noise removal, including feature extraction. The generated classification model used for prediction can identify seven emotions of the Facial Action Coding System (FACS). Results of our work in progress demonstrate an accuracy of 79.8% for the recognition of all basic seven human emotions, without the application of optimization techniques.","PeriodicalId":6731,"journal":{"name":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"8 4 1","pages":"36-39"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC50678.2020.9161445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The identification of facial expressions that reveal human emotions can help computers to better assess the human state of mind, so as to provide a more customized interaction. We explore the recognition of human facial expressions through a deep learning approach using a Convolutional Neural Network (CNN) algorithm. The system uses a labelled data set containing around 32,298 images with multiple facial expressions for training and testing. The pre-training phase involves a face detection subsystem with noise removal, including feature extraction. The generated classification model used for prediction can identify seven emotions of the Facial Action Coding System (FACS). Results of our work in progress demonstrate an accuracy of 79.8% for the recognition of all basic seven human emotions, without the application of optimization techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用深度学习从面部表情中识别人类情绪
识别揭示人类情绪的面部表情可以帮助计算机更好地评估人类的心理状态,从而提供更个性化的交互。我们通过使用卷积神经网络(CNN)算法的深度学习方法来探索人类面部表情的识别。该系统使用一个包含大约32298张带有多种面部表情的图像的标记数据集进行训练和测试。预训练阶段包括人脸检测子系统与噪声去除,包括特征提取。生成的分类模型用于预测,可以识别面部动作编码系统(FACS)的七种情绪。我们正在进行的工作结果表明,在没有应用优化技术的情况下,对所有七种基本人类情绪的识别准确率为79.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Plant Water and Soil Nutrient Requirements RFM and Classification Predictive Modelling to Improve Response Prediction Rate Utility analysis and rating of energy storages in trolleybus power supply system Face recognition based on selection approach via Canonical Correlation Analysis feature fusion The Concept of Consumer IP Address Preservation Behind the Load Balancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1