A Dispersive Optical Model Analysis of the Protons Scattering by Titanium Element Nucleus and Its Natural Isotopes

Haiddar Al-Mustafa, A. Belal
{"title":"A Dispersive Optical Model Analysis of the Protons Scattering by Titanium Element Nucleus and Its Natural Isotopes","authors":"Haiddar Al-Mustafa, A. Belal","doi":"10.11648/J.NS.20190404.12","DOIUrl":null,"url":null,"abstract":"In this paper, a dispersive optical model analysis of the neutrons scattering by titanium element nucleus and its natural isotopes is applied to the construction of the complex single-particle mean field starting from Fermi energy value to the energy value 100 MeV and for constant input values of the parameters of this mean field and the varied input values of Hatree-Fock approximation parameters of the nonlocal potential. The results according to DOMACNIP program that has been designed for that purpose would contain: continuous energy variation of the depths of the real and imaginary parts of the mean field, which are connected by dispersion relations were compared with these resulting from global parameterization of the optical model potential. In addition to continuous energy variation of the real radius parameter of the Wood-Saxon approximation to the mean field potential with its Hatree-Fock approximation of the nonlocal potential. Consequently, our results for the continuous energy variations of the predicted (total, total reaction, elastic) cross sections within the energy range (1-100) MeV, and with calculation step of the pervious range whose magnitude (1 MeV), elastic differential cross section and polarization for selected energy and for selected center-of-mass scattering angle within the energy range (1-100) MeV showed the excellent agreement with available experimental data and better than these resulted from global parameterization of the optical model potential, and thus more reliable for calculation the cross sections of unknown interactions of elements nuclei and their isotopes such neutrons scattering by titanium element nucleus and its natural isotopes.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear science abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.NS.20190404.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a dispersive optical model analysis of the neutrons scattering by titanium element nucleus and its natural isotopes is applied to the construction of the complex single-particle mean field starting from Fermi energy value to the energy value 100 MeV and for constant input values of the parameters of this mean field and the varied input values of Hatree-Fock approximation parameters of the nonlocal potential. The results according to DOMACNIP program that has been designed for that purpose would contain: continuous energy variation of the depths of the real and imaginary parts of the mean field, which are connected by dispersion relations were compared with these resulting from global parameterization of the optical model potential. In addition to continuous energy variation of the real radius parameter of the Wood-Saxon approximation to the mean field potential with its Hatree-Fock approximation of the nonlocal potential. Consequently, our results for the continuous energy variations of the predicted (total, total reaction, elastic) cross sections within the energy range (1-100) MeV, and with calculation step of the pervious range whose magnitude (1 MeV), elastic differential cross section and polarization for selected energy and for selected center-of-mass scattering angle within the energy range (1-100) MeV showed the excellent agreement with available experimental data and better than these resulted from global parameterization of the optical model potential, and thus more reliable for calculation the cross sections of unknown interactions of elements nuclei and their isotopes such neutrons scattering by titanium element nucleus and its natural isotopes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质子被钛元素原子核及其天然同位素散射的色散光学模型分析
本文应用钛元素核及其天然同位素对中子散射的色散光学模型,构建了从费米能值到100 MeV的复杂单粒子平均场,该平均场的参数输入值恒定,非局域势的Hatree-Fock近似参数输入值变化。根据为此设计的DOMACNIP程序得到的结果包括:将色散关系连接的平均场实部和虚部深度的连续能量变化与光学模型势全局参数化得到的结果进行了比较。除了平均场势的Wood-Saxon近似和非局部势的Hatree-Fock近似的实半径参数的能量连续变化外。因此,在1-100 MeV的能量范围内,随着前一个量级(1 MeV)的计算步长,我们的预测(总、总反应、弹性)截面的连续能量变化结果,在(1-100)MeV能量范围内,所选能量和所选质心散射角的弹性微分截面和偏振与现有实验数据吻合良好,且优于光学模型势的全局参数化结果。从而更可靠地计算元素原子核及其同位素之间未知相互作用的截面,例如钛元素原子核及其天然同位素对中子的散射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the Basic Neutronics and Thermal-Hydraulics for the Safety Evaluation of the Advanced Micro Reactor (AMR) Reunderstand and Discuss the Hardness Limits of RCC-M M5110 Part Materials Energies of Doubly Excited 1,3P° Resonances in He-like Systems Below the N = 2–14 Hydrogenic Threshold Structural Assessment of the European DEMO Water-Cooled Lithium Lead Breeding Blanket Central Outboard Segment Under Remote Maintenance Loading Conditions Investigation of Alignment Effects of Neutron and Proton Pairs in High Spin States of Band Crossing for 159,160Sm Isotopes Using Projected Shell Model (PSM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1