Optimal Cross-Sectional Regression

Z. Liao, Yan Liu
{"title":"Optimal Cross-Sectional Regression","authors":"Z. Liao, Yan Liu","doi":"10.2139/ssrn.3719299","DOIUrl":null,"url":null,"abstract":"In the context of linear-beta pricing models, we develop a new class of two-pass estimators that \nare available in closed form and dominate existing two-pass estimators in terms of estimation \nefficiency. Importantly, we map our model into the generalized method of moments (GMM) \nframework and show our two-pass estimator is as efficient as the optimal GMM estimator, \nwhich is known to be semiparametrically efficient in the literature. Hence, contrary to popular \nbelief, information loss does not need to occur when we go from the more methodical GMM \napproach to the simple-to-implement two-pass regressors. Intuitively, our estimator improves \nefficiency by disentangling the impacts of idiosyncratic and systematic return innovations on \npricing errors in the second-stage cross-sectional regression. As an empirical application of the \nnew two-pass estimators, we apply our approach to current factor models and shed new light \non the Fama and French (2015) versus Hou, Xue, and Zhang (2015) debate.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3719299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In the context of linear-beta pricing models, we develop a new class of two-pass estimators that are available in closed form and dominate existing two-pass estimators in terms of estimation efficiency. Importantly, we map our model into the generalized method of moments (GMM) framework and show our two-pass estimator is as efficient as the optimal GMM estimator, which is known to be semiparametrically efficient in the literature. Hence, contrary to popular belief, information loss does not need to occur when we go from the more methodical GMM approach to the simple-to-implement two-pass regressors. Intuitively, our estimator improves efficiency by disentangling the impacts of idiosyncratic and systematic return innovations on pricing errors in the second-stage cross-sectional regression. As an empirical application of the new two-pass estimators, we apply our approach to current factor models and shed new light on the Fama and French (2015) versus Hou, Xue, and Zhang (2015) debate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最优横截面回归
在线性-beta定价模型的背景下,我们开发了一类新的两步估计器,它们以封闭形式可用,并且在估计效率方面优于现有的两步估计器。重要的是,我们将我们的模型映射到广义矩量方法(GMM)框架中,并表明我们的两步估计器与最优GMM估计器一样有效,在文献中已知最优GMM估计器是半参数有效的。因此,与普遍的看法相反,当我们从更有条理的GMM方法转向简单实现的两步回归时,并不需要发生信息损失。直观地说,我们的估计器通过在第二阶段横截面回归中分离特质性和系统性收益创新对定价误差的影响来提高效率。作为新的双通道估计器的经验应用,我们将我们的方法应用于当前的因素模型,并对Fama和French(2015)与Hou, Xue和Zhang(2015)的辩论进行了新的阐释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hawkes-driven stochastic volatility models: goodness-of-fit testing of alternative intensity specifications with S&P500 data Identification of Factor Risk Premia Herding in Probabilistic Forecasts Efficient Bias Robust Cross Section Factor Models Multi-factor, Age-Cohort, Affine Mortality Models: A Multi-Country Comparison
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1