Valerie C. Cullen , A.Jill Mackarel , Shirley J. Hislip , Clare M. O'Connor , Alan K. Keenan
{"title":"Investigation of vascular endothelial growth factor effects on pulmonary endothelial monolayer permeability and neutrophil transmigration","authors":"Valerie C. Cullen , A.Jill Mackarel , Shirley J. Hislip , Clare M. O'Connor , Alan K. Keenan","doi":"10.1016/S0306-3623(01)00102-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study sought to determine whether vascular endothelial growth factor (VEGF)-induced permeabilisation of pulmonary endothelium to macromolecules could be related to a permissive role for neutrophil-derived VEGF in neutrophil transmigration. Treatment of human pulmonary artery endothelial cell (HPAEC) monolayers with 1, 10 or 100 ng/ml VEGF for 15 min or 1, 10 ng/ml for 90 min significantly increased endothelial permeability to trypan blue-labelled albumin (TB-BSA). These increases were correlated with changes in the cellular distribution of F-actin, as visualised by rhodamine–phalloidin staining: increased stress fibre formation, cellular elongation and formation of intercellular gaps after 15 min; at 90 min, there was also evidence of microspike formation and extension of spindle processes from the cell surface. Treatment of human neutrophil suspensions with 200 nM phorbol myristyl acetate (PMA), <em>n</em>-formyl-methionyl leucylphenylalanine (fMLP, 10 nM), interleukin-8 (IL-8, 10 nM) (but not with leukotriene B<sub>4</sub> (LTB<sub>4</sub>) 100 nM), for 30 min caused significant extracellular release of neutrophil VEGF stores. A permissive role for neutrophil-derived VEGF in facilitating migration across HPAEC monolayers was assessed in experiments using a functional blocking antihuman VEGF antibody. In the presence of this antibody (10 μg/ml), neutrophil migration in response to fMLP (10 nM), IL-8 (10 nM) or LTB<sub>4</sub> (100 nM) was not significantly different to that in the absence of antibody. We conclude that neutrophil-derived VEGF does not play a functional role in facilitating neutrophil migration across pulmonary vascular endothelium, despite its ability to induce cytoskeletal changes and enhance endothelial macromolecular permeability.</p></div>","PeriodicalId":12607,"journal":{"name":"General Pharmacology-the Vascular System","volume":"35 3","pages":"Pages 149-157"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0306-3623(01)00102-1","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Pharmacology-the Vascular System","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306362301001021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
This study sought to determine whether vascular endothelial growth factor (VEGF)-induced permeabilisation of pulmonary endothelium to macromolecules could be related to a permissive role for neutrophil-derived VEGF in neutrophil transmigration. Treatment of human pulmonary artery endothelial cell (HPAEC) monolayers with 1, 10 or 100 ng/ml VEGF for 15 min or 1, 10 ng/ml for 90 min significantly increased endothelial permeability to trypan blue-labelled albumin (TB-BSA). These increases were correlated with changes in the cellular distribution of F-actin, as visualised by rhodamine–phalloidin staining: increased stress fibre formation, cellular elongation and formation of intercellular gaps after 15 min; at 90 min, there was also evidence of microspike formation and extension of spindle processes from the cell surface. Treatment of human neutrophil suspensions with 200 nM phorbol myristyl acetate (PMA), n-formyl-methionyl leucylphenylalanine (fMLP, 10 nM), interleukin-8 (IL-8, 10 nM) (but not with leukotriene B4 (LTB4) 100 nM), for 30 min caused significant extracellular release of neutrophil VEGF stores. A permissive role for neutrophil-derived VEGF in facilitating migration across HPAEC monolayers was assessed in experiments using a functional blocking antihuman VEGF antibody. In the presence of this antibody (10 μg/ml), neutrophil migration in response to fMLP (10 nM), IL-8 (10 nM) or LTB4 (100 nM) was not significantly different to that in the absence of antibody. We conclude that neutrophil-derived VEGF does not play a functional role in facilitating neutrophil migration across pulmonary vascular endothelium, despite its ability to induce cytoskeletal changes and enhance endothelial macromolecular permeability.