Revealing Hidden Drawings in Leonardo’s ‘the Virgin of the Rocks’ from Macro X-Ray Fluorescence Scanning Data through Element Line Localisation

Su Yan, Jun-Jie Huang, Nathan Daly, C. Higgitt, P. Dragotti
{"title":"Revealing Hidden Drawings in Leonardo’s ‘the Virgin of the Rocks’ from Macro X-Ray Fluorescence Scanning Data through Element Line Localisation","authors":"Su Yan, Jun-Jie Huang, Nathan Daly, C. Higgitt, P. Dragotti","doi":"10.1109/ICASSP40776.2020.9054460","DOIUrl":null,"url":null,"abstract":"Macro X-Ray Fluorescence (XRF) scanning is an increasingly widely used imaging technique for the non-invasive detection and mapping of chemical elements in Old Master paintings. Existing approaches for XRF signal analysis require varying degrees of expert user input. They are mainly based on peak fitting at fixed energies associated with each element and require the target elements to be selected manually. In this paper, we propose a new method that can process macro XRF scanning data from paintings fully automatically. The method consists of two parts: 1) detecting pulses in an XRF spectrum using Finite Rate of Innovation (FRI) theory; 2) producing the distribution maps for each element automatically identified in the painting. The results presented show the ability of our method to detect weak or partially overlapping signals and more excitingly to have visualisation of underdrawing in a masterpiece by Leonardo da Vinci.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"26 1","pages":"1444-1448"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Macro X-Ray Fluorescence (XRF) scanning is an increasingly widely used imaging technique for the non-invasive detection and mapping of chemical elements in Old Master paintings. Existing approaches for XRF signal analysis require varying degrees of expert user input. They are mainly based on peak fitting at fixed energies associated with each element and require the target elements to be selected manually. In this paper, we propose a new method that can process macro XRF scanning data from paintings fully automatically. The method consists of two parts: 1) detecting pulses in an XRF spectrum using Finite Rate of Innovation (FRI) theory; 2) producing the distribution maps for each element automatically identified in the painting. The results presented show the ability of our method to detect weak or partially overlapping signals and more excitingly to have visualisation of underdrawing in a masterpiece by Leonardo da Vinci.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过元素线定位从宏观x射线荧光扫描数据揭示达芬奇“岩石圣母”中的隐藏画作
宏观x射线荧光(XRF)扫描是一种越来越广泛使用的成像技术,用于对古代大师画作中的化学元素进行无创检测和绘制。现有的XRF信号分析方法需要不同程度的专家用户输入。它们主要基于与每个元素关联的固定能量处的峰值拟合,需要人工选择目标元素。在本文中,我们提出了一种新的方法,可以完全自动地处理来自绘画的宏XRF扫描数据。该方法由两部分组成:1)利用有限创新率(FRI)理论检测XRF频谱中的脉冲;2)生成在绘画中自动识别的每个元素的分布图。结果表明,我们的方法能够检测到微弱或部分重叠的信号,更令人兴奋的是,我们可以在达芬奇的杰作中看到底图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical Analysis of Multi-Carrier Agile Phased Array Radar Paco and Paco-Dct: Patch Consensus and Its Application To Inpainting Array-Geometry-Aware Spatial Active Noise Control Based on Direction-of-Arrival Weighting Neural Network Wiretap Code Design for Multi-Mode Fiber Optical Channels Distributed Non-Orthogonal Pilot Design for Multi-Cell Massive Mimo Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1