On the Probabilistic Latent Semantic Analysis Generalization as the Singular Value Decomposition Probabilistic Image

Pau Figuera Vinué, P. G. Bringas
{"title":"On the Probabilistic Latent Semantic Analysis Generalization as the Singular Value Decomposition Probabilistic Image","authors":"Pau Figuera Vinué, P. G. Bringas","doi":"10.2991/jsta.d.200605.001","DOIUrl":null,"url":null,"abstract":"The Probabilistic Latent Semantic Analysis has been related with the Singular Value Decomposition. Several problems occur when this comparative is done. Data class restrictions and the existence of several local optima mask the relation, being a formal analogy without any real significance. Moreover, the computational difficulty in terms of time and memory limits the technique applicability. In this work, we use the Nonnegative Matrix Factorization with the Kullback–Leibler divergence to prove, when the number of model components is enough and a limit condition is reached, that the Singular Value Decomposition and the Probabilistic Latent Semantic Analysis empirical distributions are arbitrary close. Under such conditions, the Nonnegative Matrix Factorization and the Probabilistic Latent Semantic Analysis equality is obtained. With this result, the Singular Value Decomposition of every nonnegative entries matrix converges to the general case Probabilistic Latent Semantic Analysis results and constitutes the unique probabilistic image. Moreover, a faster algorithm for the Probabilistic Latent Semantic Analysis is provided.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":"56 1","pages":"286-296"},"PeriodicalIF":1.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/jsta.d.200605.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

The Probabilistic Latent Semantic Analysis has been related with the Singular Value Decomposition. Several problems occur when this comparative is done. Data class restrictions and the existence of several local optima mask the relation, being a formal analogy without any real significance. Moreover, the computational difficulty in terms of time and memory limits the technique applicability. In this work, we use the Nonnegative Matrix Factorization with the Kullback–Leibler divergence to prove, when the number of model components is enough and a limit condition is reached, that the Singular Value Decomposition and the Probabilistic Latent Semantic Analysis empirical distributions are arbitrary close. Under such conditions, the Nonnegative Matrix Factorization and the Probabilistic Latent Semantic Analysis equality is obtained. With this result, the Singular Value Decomposition of every nonnegative entries matrix converges to the general case Probabilistic Latent Semantic Analysis results and constitutes the unique probabilistic image. Moreover, a faster algorithm for the Probabilistic Latent Semantic Analysis is provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为奇异值分解概率图像的概率潜在语义分析概化
概率潜在语义分析与奇异值分解有关。进行比较时会出现几个问题。数据类的限制和几个局部最优的存在掩盖了这种关系,是一种形式上的类比,没有任何实际意义。此外,时间和内存方面的计算难度限制了该技术的适用性。本文利用具有Kullback-Leibler散度的非负矩阵分解证明了当模型分量足够多且达到极限条件时,奇异值分解和概率潜在语义分析的经验分布是任意接近的。在此条件下,得到了非负矩阵分解和概率潜在语义分析等式。利用这一结果,将每个非负项矩阵的奇异值分解收敛到一般情况下的概率潜在语义分析结果,构成唯一的概率图像。此外,还提出了一种更快的概率潜在语义分析算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
13 weeks
期刊最新文献
Correction: Topp-Leone Cauchy Family of Distributions with Applications in Industrial Engineering Topp-Leone Cauchy Family of Distributions with Applications in Industrial Engineering Zero to k Inflated Poisson Regression Models with Applications A Class of Estimators for Estimation of Population Mean Under Random Non-response in Two Phase Successive Sampling Predictive Estimation of Finite Population Mean in Case of Missing Data Under Two-phase Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1