A Text Clustering Algorithm based on Weeds and Differential Optimization

Lipeng Yang, Fuzhang Wang, Chunmei Fan
{"title":"A Text Clustering Algorithm based on Weeds and Differential Optimization","authors":"Lipeng Yang, Fuzhang Wang, Chunmei Fan","doi":"10.14257/ijdta.2016.9.12.12","DOIUrl":null,"url":null,"abstract":"Invasive weed optimization (IWO) is a swarm optimization algorithm with both explorative and exploitive power where the diverisity of the population is obtained by allowing the reproduction and mutation of individuals with poor fitness .Differential optimization algorithm is a random parallel algorithm according to a vector change that can make individuals change toward outstanding individuals with global convergence.For k-means algorithm , the traditional algorirhm is prone to get stuck at local optimum and is sensitive to random initialization. Based on the aforementiond background a novel optimization algorithm based hybriding DE and IWO which denoted IWODE-KM is employed to optimize the parameters of k-means and is further applied to chinese text clustering. Experiment results shows that the proposed method outperforms both of its ancestors.","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"21 1","pages":"121-130"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/ijdta.2016.9.12.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Invasive weed optimization (IWO) is a swarm optimization algorithm with both explorative and exploitive power where the diverisity of the population is obtained by allowing the reproduction and mutation of individuals with poor fitness .Differential optimization algorithm is a random parallel algorithm according to a vector change that can make individuals change toward outstanding individuals with global convergence.For k-means algorithm , the traditional algorirhm is prone to get stuck at local optimum and is sensitive to random initialization. Based on the aforementiond background a novel optimization algorithm based hybriding DE and IWO which denoted IWODE-KM is employed to optimize the parameters of k-means and is further applied to chinese text clustering. Experiment results shows that the proposed method outperforms both of its ancestors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于杂草和微分优化的文本聚类算法
入侵杂草优化算法(Invasive weed optimization, IWO)是一种具有探索性和剥削性的群体优化算法,通过允许适应度较差的个体繁殖和突变来获得种群的多样性。差分优化算法是一种随机并行算法,根据矢量变化使个体向全局收敛的优秀个体变化。对于k-means算法,传统算法容易陷入局部最优且对随机初始化敏感。基于上述背景,提出了一种新的基于混合DE和IWO的优化算法(IWODE-KM)来优化k-means参数,并将其进一步应用于中文文本聚类。实验结果表明,该方法的性能优于前两种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logical Data Integration Model for the Integration of Data Repositories Fuzzy Associative Classification Driven MapReduce Computing Solution for Effective Learning from Uncertain and Dynamic Big Data Decision Tree Algorithms C4.5 and C5.0 in Data Mining: A Review Evaluating Intelligent Search Agents in a Controlled Environment Using Complex Queries: An Empirical Study ScaffdCF: A Prototype Interface for Managing Conflicts in Peer Review Process of Open Collaboration Projects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1