{"title":"The analysis of evolutionary optimisation on the TSP(1,2) problem","authors":"Xiaoyun Xia, Xinsheng Lai, Chen Yi","doi":"10.1504/IJCSE.2016.10007955","DOIUrl":null,"url":null,"abstract":"TSP(1,2) problem is a special case of the travelling salesperson problem which is NP-hard. Many heuristics including evolutionary algorithms (EAs) are proposed to solve the TSP(1,2) problem. However, we know little about the performance of the EAs for the TSP(1,2) problem. This paper presents an approximation analysis of the (1+1) EA on this problem. It is shown that both the (1+1) EA and (µ + λ) EA can obtain 3/2 approximation ratio for this problem in expected polynomial runtime O(n3) and O ((µ/λ)n3 + n) , respectively. Furthermore, we prove that the (1+1) EA can provide a much tighter upper bound than a simple ACO on the TSP(1,2) problem.","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"216 1","pages":"261-268"},"PeriodicalIF":1.4000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2016.10007955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
TSP(1,2) problem is a special case of the travelling salesperson problem which is NP-hard. Many heuristics including evolutionary algorithms (EAs) are proposed to solve the TSP(1,2) problem. However, we know little about the performance of the EAs for the TSP(1,2) problem. This paper presents an approximation analysis of the (1+1) EA on this problem. It is shown that both the (1+1) EA and (µ + λ) EA can obtain 3/2 approximation ratio for this problem in expected polynomial runtime O(n3) and O ((µ/λ)n3 + n) , respectively. Furthermore, we prove that the (1+1) EA can provide a much tighter upper bound than a simple ACO on the TSP(1,2) problem.
期刊介绍:
Computational science and engineering is an emerging and promising discipline in shaping future research and development activities in both academia and industry, in fields ranging from engineering, science, finance, and economics, to arts and humanities. New challenges arise in the modelling of complex systems, sophisticated algorithms, advanced scientific and engineering computing and associated (multidisciplinary) problem-solving environments. Because the solution of large and complex problems must cope with tight timing schedules, powerful algorithms and computational techniques, are inevitable. IJCSE addresses the state of the art of all aspects of computational science and engineering with emphasis on computational methods and techniques for science and engineering applications.