{"title":"An efficient approach for the elevator button manipulation using the visual-based self-driving mobile manipulator","authors":"Toan Van Nguyen, Jin-Hyeon Jeong, Jae-Yun Jo","doi":"10.1108/ir-03-2022-0063","DOIUrl":null,"url":null,"abstract":"\nPurpose\nBecause mobile manipulators are unable to climb stairs, the elevator operation is a crucial capacity to help those kinds of robot systems work in modern multifloor buildings. Here, the elevator button manipulation is considered as an efficient approach to fulfill that requirement. Previously, some studies presented elevator button recognition algorithms while some others designed schemes for the button manipulation work. However, the mobile robot, the manipulator and the camera in their robot systems are asynchronous. Besides, the time-consuming calibration for the camera is inevitable, especially in changeable environments. This paper aims to present an alternative method for the elevator button manipulation to overcome mentioned shortcomings.\n\n\nDesign/methodology/approach\nIn this paper, the elevator button manipulation is conducted by using the visual-based self-driving mobile manipulator in which the autonomous mobile robot, the manipulator and the camera cooperate more efficiently. Namely, the mobile robot does not need to be located exactly in front of the elevator panel as the manipulator has the ability to adjust the initial frame of the camera based on the system kinematic synchronization. In addition, the proposed method does not require the real world coordinates of elevator buttons, but uniquely using their pixel positions. By doing this, not only is the projection from two-dimensional pixel coordinates to three-dimensional (3D) real world coordinates unnecessary, but also the calibration of the camera is not required.\n\n\nFindings\nThe proposed method is experimentally verified by using a visual-based self-driving mobile manipulator. This robotic system is the integration of an autonomous mobile robot, a manipulator and a camera mounted on the end-effector of the manipulator.\n\n\nResearch limitations/implications\nBecause the surface of the elevator button panel is usually mirror-like, the elevator button detection is easily affected by the glare and the brightness of the environmental light condition.\n\n\nPractical implications\nThis robot system can be used for the goods delivery or the patrol in modern multifloor buildings.\n\n\nOriginality/value\nThis paper includes three new features: simultaneously detecting and manipulating elevator buttons without the projection from pixel coordinates to 3D real world coordinates, a kinematic synchronization to help the robot system eliminate accumulated errors and a safe human-like elevator button manipulation.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":"98 1","pages":"84-93"},"PeriodicalIF":1.9000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-03-2022-0063","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 2
Abstract
Purpose
Because mobile manipulators are unable to climb stairs, the elevator operation is a crucial capacity to help those kinds of robot systems work in modern multifloor buildings. Here, the elevator button manipulation is considered as an efficient approach to fulfill that requirement. Previously, some studies presented elevator button recognition algorithms while some others designed schemes for the button manipulation work. However, the mobile robot, the manipulator and the camera in their robot systems are asynchronous. Besides, the time-consuming calibration for the camera is inevitable, especially in changeable environments. This paper aims to present an alternative method for the elevator button manipulation to overcome mentioned shortcomings.
Design/methodology/approach
In this paper, the elevator button manipulation is conducted by using the visual-based self-driving mobile manipulator in which the autonomous mobile robot, the manipulator and the camera cooperate more efficiently. Namely, the mobile robot does not need to be located exactly in front of the elevator panel as the manipulator has the ability to adjust the initial frame of the camera based on the system kinematic synchronization. In addition, the proposed method does not require the real world coordinates of elevator buttons, but uniquely using their pixel positions. By doing this, not only is the projection from two-dimensional pixel coordinates to three-dimensional (3D) real world coordinates unnecessary, but also the calibration of the camera is not required.
Findings
The proposed method is experimentally verified by using a visual-based self-driving mobile manipulator. This robotic system is the integration of an autonomous mobile robot, a manipulator and a camera mounted on the end-effector of the manipulator.
Research limitations/implications
Because the surface of the elevator button panel is usually mirror-like, the elevator button detection is easily affected by the glare and the brightness of the environmental light condition.
Practical implications
This robot system can be used for the goods delivery or the patrol in modern multifloor buildings.
Originality/value
This paper includes three new features: simultaneously detecting and manipulating elevator buttons without the projection from pixel coordinates to 3D real world coordinates, a kinematic synchronization to help the robot system eliminate accumulated errors and a safe human-like elevator button manipulation.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.