Unbiased Gradient Simulation for Zeroth-Order Optimization

Guanting Chen
{"title":"Unbiased Gradient Simulation for Zeroth-Order Optimization","authors":"Guanting Chen","doi":"10.1109/WSC48552.2020.9384045","DOIUrl":null,"url":null,"abstract":"We apply the Multi-Level Monte Carlo technique to get an unbiased estimator for the gradient of an optimization function. This procedure requires four exact or noisy function evaluations and produces an unbiased estimator for the gradient at one point. We apply this estimator to a non-convex stochastic programming problem. Under mild assumptions, our algorithm achieves a complexity bound independent of the dimension, compared with the typical one that grows linearly with the dimension.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"11 1","pages":"2947-2959"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9384045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We apply the Multi-Level Monte Carlo technique to get an unbiased estimator for the gradient of an optimization function. This procedure requires four exact or noisy function evaluations and produces an unbiased estimator for the gradient at one point. We apply this estimator to a non-convex stochastic programming problem. Under mild assumptions, our algorithm achieves a complexity bound independent of the dimension, compared with the typical one that grows linearly with the dimension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
零阶优化的无偏梯度模拟
我们应用多层蒙特卡罗技术得到了一个优化函数梯度的无偏估计。这个过程需要四次精确或有噪声的函数评估,并在一点上产生梯度的无偏估计。我们将这个估计量应用于一个非凸随机规划问题。在温和的假设下,与典型的随维数线性增长的复杂度界相比,我们的算法实现了与维数无关的复杂度界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Précis: The Emotional Mind: The Affective Roots of Culture and Cognition Emotional Correctness Robot Collaboration Intelligence with AI Evaluation and Selection of Hospital Layout Based on an Integrated Simulation Method A Simheuristic Approach for Robust Scheduling of Airport Turnaround Teams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1