Power Consumption Prediction of Digital Circuits using Machine Learning

Modi Divy Bhavesh, Nair Anoopkumar Anilkumar, Manish I. Patel, Ruchi Gajjar, D. Panchal
{"title":"Power Consumption Prediction of Digital Circuits using Machine Learning","authors":"Modi Divy Bhavesh, Nair Anoopkumar Anilkumar, Manish I. Patel, Ruchi Gajjar, D. Panchal","doi":"10.1109/AISP53593.2022.9760542","DOIUrl":null,"url":null,"abstract":"The demand for Integrated Circuits (ICs) is increasing exponentially, leading to the challenges of a more reliable and effective Electronic Design Tool (EDA) for the circuit design flow. To overcome such limitations Machine Learning (ML) is used, which can learn from the previous design data and can apply it to the unknown design given to it. In this context, the paper proposes the use of the regression technique of ML to estimate the power consumption of the MOSFET-based digital circuits. For this purpose, to train the ML-based regressor model, a dataset is created from the PMOS based Resistive Load Inverter (RLI), NMOS based RLI, and CMOS-based NAND gate layout. For the formation of the dataset, a 90nm MOS technology node is used and it inculcates the features like capacitance, resistance, number of MOSFET, their respective width and length, and the average power consumption of the respective layout. The regressor model used to predict the power consumption in this work is linear regressor, polynomial regressor, random forest regressor, decision tree regressor, and the extra tree regressor. At last, from the experimental results, it is observed that the extra tree regressor performs better for the RLI circuits with the MSE value of $4.02\\times 10^{-10}$ and $\\mathrm{R}^{2}$ value of 0.61, and for the NAND gate, the polynomial linear regressor excels with the MSE value of $7.27\\times 10^{-10}$ and $\\mathrm{R}^{2}$ value of 0.65.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"5 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The demand for Integrated Circuits (ICs) is increasing exponentially, leading to the challenges of a more reliable and effective Electronic Design Tool (EDA) for the circuit design flow. To overcome such limitations Machine Learning (ML) is used, which can learn from the previous design data and can apply it to the unknown design given to it. In this context, the paper proposes the use of the regression technique of ML to estimate the power consumption of the MOSFET-based digital circuits. For this purpose, to train the ML-based regressor model, a dataset is created from the PMOS based Resistive Load Inverter (RLI), NMOS based RLI, and CMOS-based NAND gate layout. For the formation of the dataset, a 90nm MOS technology node is used and it inculcates the features like capacitance, resistance, number of MOSFET, their respective width and length, and the average power consumption of the respective layout. The regressor model used to predict the power consumption in this work is linear regressor, polynomial regressor, random forest regressor, decision tree regressor, and the extra tree regressor. At last, from the experimental results, it is observed that the extra tree regressor performs better for the RLI circuits with the MSE value of $4.02\times 10^{-10}$ and $\mathrm{R}^{2}$ value of 0.61, and for the NAND gate, the polynomial linear regressor excels with the MSE value of $7.27\times 10^{-10}$ and $\mathrm{R}^{2}$ value of 0.65.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的数字电路功耗预测
集成电路(ic)的需求呈指数级增长,导致更可靠和有效的电子设计工具(EDA)的电路设计流程的挑战。为了克服这些限制,机器学习(ML)被使用,它可以从以前的设计数据中学习,并将其应用于未知的设计。在此背景下,本文提出使用机器学习的回归技术来估计基于mosfet的数字电路的功耗。为此,为了训练基于ml的回归模型,我们从基于PMOS的电阻负载逆变器(RLI)、基于NMOS的RLI和基于cmos的NAND门布局中创建了一个数据集。数据集的形成采用90nm的MOS技术节点,该节点输入电容、电阻、MOSFET个数、各自的宽度和长度以及各自布局的平均功耗等特征。本文中用于预测电力消耗的回归模型有线性回归、多项式回归、随机森林回归、决策树回归和额外树回归。最后,从实验结果来看,额外的树回归量对于RLI电路的MSE值为$4.02\乘以10^{-10}$和$\ mathm {R}^{2}$为0.61时表现较好,对于NAND门,多项式线性回归量的MSE值为$7.27\乘以10^{-10}$和$\ mathm {R}^{2}$为0.65时表现较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 5.80 GHz Harmonic Suppression Antenna for Wireless Energy Transfer Application Crack identification from concrete structure images using deep transfer learning Energy Efficient VoD with Cache in TWDM PON ring Blockchain-based IoT Device Security A New Dynamic Method of Multiprocessor Scheduling using Modified Crow Search Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1