Gap reduction based frequency tuning for AlN capacitive-piezoelectric resonators

R. Schneider, T. Naing, T. Rocheleau, C. Nguyen
{"title":"Gap reduction based frequency tuning for AlN capacitive-piezoelectric resonators","authors":"R. Schneider, T. Naing, T. Rocheleau, C. Nguyen","doi":"10.1109/FCS.2015.7138938","DOIUrl":null,"url":null,"abstract":"A voltage controlled resonance frequency tuning mechanism, capable of effecting 1,500 ppm frequency shifts or more, is demonstrated for the first time on an AlN capacitive-piezoelectric resonator. The key enabler here is a compliant top electrode suspension that moves with applied voltage to effectively vary capacitance in series with the device, hence changing its series resonance frequency. Capacitive-piezoelectric AlN micromechanical resonators, i.e., those with electrodes not directly attached to the piezoelectric material, already exhibit high Q-factors compared to attached-electrode counterparts, e.g., 8,800 versus 2,100 at 300 MHz; are on/off switchable; and, as shown in this work, can exhibit electromechanical coupling Cx=C0 of 1.0%. This new ability to tune frequency without the need for external components now invites the use of on-chip corrective schemes to improve accuracy or reduce temperature-induced frequency drift, making an even more compelling case to employ this technology for frequency control applications.","PeriodicalId":57667,"journal":{"name":"时间频率公报","volume":"335 1","pages":"700-705"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"时间频率公报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/FCS.2015.7138938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A voltage controlled resonance frequency tuning mechanism, capable of effecting 1,500 ppm frequency shifts or more, is demonstrated for the first time on an AlN capacitive-piezoelectric resonator. The key enabler here is a compliant top electrode suspension that moves with applied voltage to effectively vary capacitance in series with the device, hence changing its series resonance frequency. Capacitive-piezoelectric AlN micromechanical resonators, i.e., those with electrodes not directly attached to the piezoelectric material, already exhibit high Q-factors compared to attached-electrode counterparts, e.g., 8,800 versus 2,100 at 300 MHz; are on/off switchable; and, as shown in this work, can exhibit electromechanical coupling Cx=C0 of 1.0%. This new ability to tune frequency without the need for external components now invites the use of on-chip corrective schemes to improve accuracy or reduce temperature-induced frequency drift, making an even more compelling case to employ this technology for frequency control applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于间隙减小的AlN电容压电谐振器频率调谐
一种电压控制的谐振频率调谐机制,能够影响1500 ppm或更高的频率位移,首次在AlN电容-压电谐振器上进行了演示。这里的关键促成因素是一个兼容的顶部电极悬架,它可以随着施加的电压移动,从而有效地随器件串联改变电容,从而改变其串联谐振频率。电容压电AlN微机械谐振器,即那些电极不直接附着在压电材料上的谐振器,与附着电极相比,已经表现出高q因子,例如,在300 MHz时,8800比2100;开/关可切换;,如本文所示,可以表现为1.0%的机电耦合Cx=C0。这种无需外部元件即可调谐频率的新能力现在邀请使用片上校正方案来提高精度或减少温度引起的频率漂移,这使得将该技术用于频率控制应用的情况更加引人注目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1135
期刊最新文献
Tutorial session Development of an erbium-fiber-laser-based optical frequency comb at NTSC 6/12-channel synchronous digital phasemeter for ultrastable signal characterization and use Research on time and frequency transfer based on BeiDou common view Preparing ACES-PHARAO data analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1