Investigations on the Effect of Cooling Rate on Quenching & Partitioning (Q&P) in Martensitic Stainless Steels

IF 0.3 Q4 THERMODYNAMICS HTM-Journal of Heat Treatment and Materials Pub Date : 2023-08-01 DOI:10.1515/htm-2023-0010
S. Kresser, R. Schneider, H. Zunko, C. Sommitsch
{"title":"Investigations on the Effect of Cooling Rate on Quenching & Partitioning (Q&P) in Martensitic Stainless Steels","authors":"S. Kresser, R. Schneider, H. Zunko, C. Sommitsch","doi":"10.1515/htm-2023-0010","DOIUrl":null,"url":null,"abstract":"Abstract Quenching and partitioning (Q&P) is a heat treatment used to adjust the retained austenite content in the microstructure. Such heat treatment is used mainly for low-alloyed steels. However, the partitioning effect has an influence on higher alloyed steels also, such as martensitic stainless steels. The typical heat treatment for these steels is quenching and tempering (Q&T). In large-scale tools the cooling rate in the inner area is lower than in the peripheral area, and the central region of the tool might not be cooled down completely to room temperature before the tempering step takes place, resulting in a Q&P instead of a Q&T treatment. This article deals with these effects through dilatometric investigation of steels X40Cr14, “X25CrN13” and “X50CrMoN17-1” at two different austenitizing temperatures and two cooling rates, with a variation of the quenching temperature. It was found that partitioning takes place even at slow cooling rates. However, due to partial pearlite formation and pre-carbide precipitation/coarsening, the retained austenite content may be lower than with rapid cooling. Further, autopartitioning was also detected at slow cooling rates.","PeriodicalId":44294,"journal":{"name":"HTM-Journal of Heat Treatment and Materials","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HTM-Journal of Heat Treatment and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/htm-2023-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Quenching and partitioning (Q&P) is a heat treatment used to adjust the retained austenite content in the microstructure. Such heat treatment is used mainly for low-alloyed steels. However, the partitioning effect has an influence on higher alloyed steels also, such as martensitic stainless steels. The typical heat treatment for these steels is quenching and tempering (Q&T). In large-scale tools the cooling rate in the inner area is lower than in the peripheral area, and the central region of the tool might not be cooled down completely to room temperature before the tempering step takes place, resulting in a Q&P instead of a Q&T treatment. This article deals with these effects through dilatometric investigation of steels X40Cr14, “X25CrN13” and “X50CrMoN17-1” at two different austenitizing temperatures and two cooling rates, with a variation of the quenching temperature. It was found that partitioning takes place even at slow cooling rates. However, due to partial pearlite formation and pre-carbide precipitation/coarsening, the retained austenite content may be lower than with rapid cooling. Further, autopartitioning was also detected at slow cooling rates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷却速率对马氏体不锈钢淬火和分配(Q&P)影响的研究
淬火配分(Q&P)是一种调整组织中残余奥氏体含量的热处理方法。这种热处理主要用于低合金钢。然而,分配效应对高合金钢,如马氏体不锈钢也有影响。这些钢的典型热处理是淬火回火(Q&T)。在大型刀具中,内部区域的冷却速度低于外围区域,并且在回火步骤发生之前,刀具的中心区域可能没有完全冷却到室温,导致Q&P而不是Q&T处理。本文通过对X40Cr14、“X25CrN13”和“X50CrMoN17-1”钢在两种不同的奥氏体化温度和两种冷却速率下,随淬火温度的变化,进行了膨胀试验研究。研究发现,即使在较慢的冷却速率下,也会发生分划。然而,由于部分珠光体的形成和预碳化物的析出/粗化,残余奥氏体含量可能低于快速冷却。此外,在缓慢的冷却速率下也检测到自动分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.50
自引率
33.30%
发文量
43
期刊最新文献
HTM Praxis Combined CFD and Heat Treatment Simulation of High-Pressure Gas Quenching Process Optimizing the Solution Annealing of Additively Manufactured AlSi10Mg AWT-Info / HTM 05-2023 Contents / Inhalt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1