Low Latency And Low-Level Sensor Fusion For Automotive Use-Cases

Matthias Pollach, Felix Schiegg, A. Knoll
{"title":"Low Latency And Low-Level Sensor Fusion For Automotive Use-Cases","authors":"Matthias Pollach, Felix Schiegg, A. Knoll","doi":"10.1109/ICRA40945.2020.9196717","DOIUrl":null,"url":null,"abstract":"This work proposes a probabilistic low level automotive sensor fusion approach using LiDAR, RADAR and camera data. The method is stateless and directly operates on associated data from all sensor modalities. Tracking is not used, in order to reduce the object detection latency and create existence hypotheses per frame. The probabilistic fusion uses input from 3D and 2D space. An association method using a combination of overlap and distance metrics, avoiding the need for sensor synchronization is proposed. A Bayesian network executes the sensor fusion. The proposed approach is compared with a state of the art fusion system, which is using multiple sensors of the same modality and relies on tracking for object detection. Evaluation was done using low level sensor data recorded in an urban environment. The test results show that the low level sensor fusion reduces the object detection latency.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"74 1","pages":"6780-6786"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9196717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work proposes a probabilistic low level automotive sensor fusion approach using LiDAR, RADAR and camera data. The method is stateless and directly operates on associated data from all sensor modalities. Tracking is not used, in order to reduce the object detection latency and create existence hypotheses per frame. The probabilistic fusion uses input from 3D and 2D space. An association method using a combination of overlap and distance metrics, avoiding the need for sensor synchronization is proposed. A Bayesian network executes the sensor fusion. The proposed approach is compared with a state of the art fusion system, which is using multiple sensors of the same modality and relies on tracking for object detection. Evaluation was done using low level sensor data recorded in an urban environment. The test results show that the low level sensor fusion reduces the object detection latency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽车用例的低延迟和低水平传感器融合
本研究提出了一种利用激光雷达、雷达和相机数据的概率低水平汽车传感器融合方法。该方法是无状态的,直接对来自所有传感器模态的相关数据进行操作。不使用跟踪,以减少对象检测延迟和创建每帧存在假设。概率融合使用来自3D和2D空间的输入。提出了一种利用重叠和距离度量相结合的关联方法,避免了传感器同步的需要。采用贝叶斯网络进行传感器融合。将该方法与当前最先进的融合系统进行了比较,该融合系统使用相同模态的多个传感器并依赖于跟踪进行目标检测。评估是使用在城市环境中记录的低水平传感器数据完成的。实验结果表明,低水平传感器融合降低了目标检测延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstractions for computing all robotic sensors that suffice to solve a planning problem An Adaptive Supervisory Control Approach to Dynamic Locomotion Under Parametric Uncertainty Interval Search Genetic Algorithm Based on Trajectory to Solve Inverse Kinematics of Redundant Manipulators and Its Application Path-Following Model Predictive Control of Ballbots Identification and evaluation of a force model for multirotor UAVs*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1