Mark Oatey, Fay Duff, Neil Emslie, Steven Christie, Rida Rikabi, P. Henderson, Kamaljeet Singh, Apoorva Kumar, G. Agrawal, Shaktim Dutta, Haroon Bajwa
{"title":"Enhancing Production Through Well Interventions Using End-to-End Evaluation Methodology","authors":"Mark Oatey, Fay Duff, Neil Emslie, Steven Christie, Rida Rikabi, P. Henderson, Kamaljeet Singh, Apoorva Kumar, G. Agrawal, Shaktim Dutta, Haroon Bajwa","doi":"10.2118/204540-ms","DOIUrl":null,"url":null,"abstract":"\n In this paper, an end-to-end evaluation service using well historical production, petrophysics and reservoir data combined with new logs to perform well intervention solution methodology is followed. Across four wells, production logging data is acquired and analysed to understand the current performance of different heterogeneous layers. Combining this with openhole data, additional perforations and reperforations are planned. Perforations are carried out using deep-penetration charges to create a larger and deeper flow path between the reservoir and the wellbore. Post-perforation production logs are carried out, and the data is analysed to understand the effectiveness of newly perforated layers.\n Detailed production enhancement of all four wells is discussed in the paper. The majority of the wells displayed a significant increase in production when compared with pre-intervention flow rates. Minor scale buildup in the production liner was observed during pre-perforation production log data which was observed to be cleared during post-perforation production log data. The deliverability of the wells had also gone up, with similar production rates at much higher bottomhole pressure compared with pressures before intervention. This also confirmed the effectiveness of deep-penetration charges during perforation in providing better conduit from reservoir to wellbore. Additional perforations carried out, based on the heterogeneity of the reservoir and combining the openhole data, proved to be highly effective, with high deliverability observed from these new layers. In conclusion, a successful production enhancement of these low-flow-rate gas condensate wells was achieved with an end-to-end solution.\n A highly heterogeneous reservoir with multiple thinly bedded layers presented challenges in understanding their productivity. The combination of pre-perforation production log and post-perforation production log enabled evaluation of the deliverability of the complex heterogeneous reservoir. Further, production enhancement from each reperforated interval was confirmed using a direct measurement, i.e., production log data instead of relying on surface flow rates to better understand the downhole dynamics.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204540-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an end-to-end evaluation service using well historical production, petrophysics and reservoir data combined with new logs to perform well intervention solution methodology is followed. Across four wells, production logging data is acquired and analysed to understand the current performance of different heterogeneous layers. Combining this with openhole data, additional perforations and reperforations are planned. Perforations are carried out using deep-penetration charges to create a larger and deeper flow path between the reservoir and the wellbore. Post-perforation production logs are carried out, and the data is analysed to understand the effectiveness of newly perforated layers.
Detailed production enhancement of all four wells is discussed in the paper. The majority of the wells displayed a significant increase in production when compared with pre-intervention flow rates. Minor scale buildup in the production liner was observed during pre-perforation production log data which was observed to be cleared during post-perforation production log data. The deliverability of the wells had also gone up, with similar production rates at much higher bottomhole pressure compared with pressures before intervention. This also confirmed the effectiveness of deep-penetration charges during perforation in providing better conduit from reservoir to wellbore. Additional perforations carried out, based on the heterogeneity of the reservoir and combining the openhole data, proved to be highly effective, with high deliverability observed from these new layers. In conclusion, a successful production enhancement of these low-flow-rate gas condensate wells was achieved with an end-to-end solution.
A highly heterogeneous reservoir with multiple thinly bedded layers presented challenges in understanding their productivity. The combination of pre-perforation production log and post-perforation production log enabled evaluation of the deliverability of the complex heterogeneous reservoir. Further, production enhancement from each reperforated interval was confirmed using a direct measurement, i.e., production log data instead of relying on surface flow rates to better understand the downhole dynamics.