Cross-Social Network Collaborative Recommendation

Aleksandr Farseev, Denis Kotkov, Alexander Semenov, J. Veijalainen, Tat-Seng Chua
{"title":"Cross-Social Network Collaborative Recommendation","authors":"Aleksandr Farseev, Denis Kotkov, Alexander Semenov, J. Veijalainen, Tat-Seng Chua","doi":"10.1145/2786451.2786504","DOIUrl":null,"url":null,"abstract":"Online social networks have become an essential part of our daily life, and an increasing number of users are using multiple online social networks simultaneously. We hypothesize that the integration of data from multiple social networks could boost the performance of recommender systems. In our study, we perform cross-social network collaborative recommendation and show that fusing multi-source data enables us to achieve higher recommendation performance as compared to various single-source baselines.","PeriodicalId":93136,"journal":{"name":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Web Science Conference. ACM Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2786451.2786504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Online social networks have become an essential part of our daily life, and an increasing number of users are using multiple online social networks simultaneously. We hypothesize that the integration of data from multiple social networks could boost the performance of recommender systems. In our study, we perform cross-social network collaborative recommendation and show that fusing multi-source data enables us to achieve higher recommendation performance as compared to various single-source baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨社会网络协同推荐
在线社交网络已经成为我们日常生活中必不可少的一部分,越来越多的用户同时使用多个在线社交网络。我们假设来自多个社交网络的数据集成可以提高推荐系统的性能。在我们的研究中,我们进行了跨社交网络的协同推荐,并表明与各种单一来源的基线相比,融合多源数据使我们能够获得更高的推荐性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opinions on Homeopathy for COVID-19 on Twitter. An Initial Study of Depression Detection on Mandarin Textual through BERT Model WebSci '22: 14th ACM Web Science Conference 2022, Barcelona, Spain, June 26 - 29, 2022 WebSci '21: 13th ACM Web Science Conference 2021, Virtual Event, United Kingdom, 21-25 June, 2021, Companion Publication In conversation with Martha Lane Fox and Wendy Hall on the Future of the Internet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1