Improved policy representation and policy search for proactive content caching in wireless networks

S. Somuyiwa, A. György, Deniz Gündüz
{"title":"Improved policy representation and policy search for proactive content caching in wireless networks","authors":"S. Somuyiwa, A. György, Deniz Gündüz","doi":"10.23919/WIOPT.2017.7959914","DOIUrl":null,"url":null,"abstract":"We study the problem of proactively pushing contents into a finite capacity cache memory of a user equipment in order to reduce the long-term average energy consumption in a wireless network. We consider an online social network (OSN) framework, in which new contents are generated over time and each content remains relevant to the user for a random time period, called the lifetime of the content. The user accesses the OSN through a wireless network at random time instants to download and consume all the relevant contents. Downloading contents has an energy cost that depends on the channel state and the number of downloaded contents. Our aim is to reduce the long-term average energy consumption by proactively caching contents at favorable channel conditions. In previous work, it was shown that the optimal caching policy is infeasible to compute (even with the complete knowledge of a stochastic model describing the system), and a simple family of threshold policies was introduced and optimised using the finite difference method. In this paper we improve upon both components of this approach: we use linear function approximation (LFA) to better approximate the considered family of caching policies, and apply the REINFORCE algorithm to optimise its parameters. Numerical simulations show that the new approach provides reduction in both the average energy cost and the running time for policy optimisation.","PeriodicalId":6630,"journal":{"name":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","volume":"34 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WIOPT.2017.7959914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We study the problem of proactively pushing contents into a finite capacity cache memory of a user equipment in order to reduce the long-term average energy consumption in a wireless network. We consider an online social network (OSN) framework, in which new contents are generated over time and each content remains relevant to the user for a random time period, called the lifetime of the content. The user accesses the OSN through a wireless network at random time instants to download and consume all the relevant contents. Downloading contents has an energy cost that depends on the channel state and the number of downloaded contents. Our aim is to reduce the long-term average energy consumption by proactively caching contents at favorable channel conditions. In previous work, it was shown that the optimal caching policy is infeasible to compute (even with the complete knowledge of a stochastic model describing the system), and a simple family of threshold policies was introduced and optimised using the finite difference method. In this paper we improve upon both components of this approach: we use linear function approximation (LFA) to better approximate the considered family of caching policies, and apply the REINFORCE algorithm to optimise its parameters. Numerical simulations show that the new approach provides reduction in both the average energy cost and the running time for policy optimisation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进了无线网络中主动内容缓存的策略表示和策略搜索
为了降低无线网络的长期平均能耗,我们研究了主动将内容推送到用户设备有限容量的缓存存储器中的问题。我们考虑一个在线社交网络(OSN)框架,其中新内容随着时间的推移而生成,每个内容在一个随机的时间段(称为内容的生命周期)内与用户保持相关性。用户可以在任意时刻通过无线网络访问OSN,下载并消费所有相关内容。下载内容的能量消耗取决于通道状态和下载内容的数量。我们的目标是通过在有利的通道条件下主动缓存内容来减少长期平均能耗。在之前的工作中,研究表明,计算最优缓存策略是不可行的(即使完全了解描述系统的随机模型),并且引入了一组简单的阈值策略,并使用有限差分方法进行了优化。在本文中,我们改进了该方法的两个组成部分:我们使用线性函数近似(LFA)来更好地近似所考虑的缓存策略族,并应用强化算法来优化其参数。数值模拟结果表明,该方法既降低了平均能源成本,又降低了策略优化的运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote speaker Keynote speaker Ad-Hoc, Mobile, and Wireless Networks: 19th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2020, Bari, Italy, October 19–21, 2020, Proceedings Retraction Note to: Mobility Aided Context-Aware Forwarding Approach for Destination-Less OppNets Ad-Hoc, Mobile, and Wireless Networks: 18th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2019, Luxembourg, Luxembourg, October 1–3, 2019, Proceedings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1