A Multimodal Aerial Underwater Vehicle with Extended Endurance and Capabilities

Di Lu, Chengke Xiong, Zheng Zeng, L. Lian
{"title":"A Multimodal Aerial Underwater Vehicle with Extended Endurance and Capabilities","authors":"Di Lu, Chengke Xiong, Zheng Zeng, L. Lian","doi":"10.1109/ICRA.2019.8793985","DOIUrl":null,"url":null,"abstract":"A new solution to improving the poor endurance of the existing hybrid aerial underwater vehicle (HAUV) is proposed in this paper. The proposed multimodal hybrid aerial underwater vehicle (MHAUV) merges the design concept of the fixed-wing unmanned aerial vehicle (UAV), the multirotor, and the underwater glider (UG) and has a novel lightweight pneumatic buoyancy adjustment system. MHAUV is well suited for moving in distinct medium and can achieve extended endurance for long distance travel in both air and water. The mathematical model is given based on Newton-Euler formalism. Necessary design principles of the vehicle’s physical parameters are obtained through different gliding equilibrium points. Then, a control scheme composed of two separate proportional-integral-derivative (PID) is employed for the vehicle’s motion control in multi-domain simulation. The simulation results are presented to verify the multi-domain mobility and the mode switch ability of the proposed vehicle intuitively. Finally, a prototype, NEZHA, is introduced to be the experimental platform. The success of the flight test, the hovering test, the underwater glide test, and the medium transition test all contribute to prove the feasibility of the proposed concept of the novel MHAUV.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8793985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

A new solution to improving the poor endurance of the existing hybrid aerial underwater vehicle (HAUV) is proposed in this paper. The proposed multimodal hybrid aerial underwater vehicle (MHAUV) merges the design concept of the fixed-wing unmanned aerial vehicle (UAV), the multirotor, and the underwater glider (UG) and has a novel lightweight pneumatic buoyancy adjustment system. MHAUV is well suited for moving in distinct medium and can achieve extended endurance for long distance travel in both air and water. The mathematical model is given based on Newton-Euler formalism. Necessary design principles of the vehicle’s physical parameters are obtained through different gliding equilibrium points. Then, a control scheme composed of two separate proportional-integral-derivative (PID) is employed for the vehicle’s motion control in multi-domain simulation. The simulation results are presented to verify the multi-domain mobility and the mode switch ability of the proposed vehicle intuitively. Finally, a prototype, NEZHA, is introduced to be the experimental platform. The success of the flight test, the hovering test, the underwater glide test, and the medium transition test all contribute to prove the feasibility of the proposed concept of the novel MHAUV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种多模态空中水下航行器,具有扩展的续航力和能力
针对现有混合式空中水下航行器(HAUV)续航能力差的问题,提出了一种新的解决方案。所提出的多模态混合空中水下航行器(MHAUV)融合了固定翼无人机(UAV)、多旋翼和水下滑翔机(UG)的设计理念,并采用了一种新型的轻型气动浮力调节系统。MHAUV非常适合在不同的介质中移动,并且可以在空气和水中实现长距离旅行的延长耐力。给出了基于牛顿-欧拉形式的数学模型。通过不同的滑翔平衡点得到飞行器物理参数的必要设计原则。然后,采用两个独立的比例-积分-导数PID (proportional-integral-derivative PID)组成的控制方案进行多域仿真中的车辆运动控制。仿真结果直观地验证了所提车辆的多域移动性和模式切换能力。最后,介绍了一个样机NEZHA作为实验平台。飞行试验、悬停试验、水下滑翔试验和介质过渡试验的成功都有助于证明所提出的新型MHAUV概念的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving collective decision accuracy via time-varying cross-inhibition Design of a Modular Continuum Robot Segment for use in a General Purpose Manipulator* Adaptive H∞ Controller for Precise Manoeuvring of a Space Robot Laparoscopy instrument tracking for single view camera and skill assessment Event-based, Direct Camera Tracking from a Photometric 3D Map using Nonlinear Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1