{"title":"Adaptive partitionings for fractal image compression","authors":"M. Ruhl, H. Hartenstein, D. Saupe","doi":"10.1109/ICIP.1997.638753","DOIUrl":null,"url":null,"abstract":"In fractal image compression a partitioning of the image into ranges is required. Saupe and Ruhl (1996) proposed to find good partitionings by means of a split-and-merge process guided by evolutionary computing. In this approach ranges are connected sets of small square image blocks. Far better rate-distortion curves can be obtained as compared to traditional quadtree partitionings, however, at the expense of an increase of computing time. In this paper we show how conventional acceleration techniques and a deterministic version of the evolution reduce the time-complexity of the method without degrading the encoding quality. Furthermore, we report on techniques to improve the rate-distortion performance and evaluate the results visually.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"25 1","pages":"310-313 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.638753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

In fractal image compression a partitioning of the image into ranges is required. Saupe and Ruhl (1996) proposed to find good partitionings by means of a split-and-merge process guided by evolutionary computing. In this approach ranges are connected sets of small square image blocks. Far better rate-distortion curves can be obtained as compared to traditional quadtree partitionings, however, at the expense of an increase of computing time. In this paper we show how conventional acceleration techniques and a deterministic version of the evolution reduce the time-complexity of the method without degrading the encoding quality. Furthermore, we report on techniques to improve the rate-distortion performance and evaluate the results visually.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分形图像压缩的自适应分区
在分形图像压缩中,需要对图像进行范围划分。Saupe和Ruhl(1996)提出通过进化计算指导的分裂合并过程来寻找良好的分区。在这种方法中,范围是小正方形图像块的连接集。然而,与传统的四叉树划分相比,可以获得更好的速率失真曲线,但代价是增加计算时间。在本文中,我们展示了传统的加速技术和进化的确定性版本如何在不降低编码质量的情况下降低方法的时间复杂度。此外,我们还报道了提高率失真性能的技术,并对结果进行了视觉评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer Analysis of Images and Patterns: 19th International Conference, CAIP 2021, Virtual Event, September 28–30, 2021, Proceedings, Part I Computer Analysis of Images and Patterns: 19th International Conference, CAIP 2021, Virtual Event, September 28–30, 2021, Proceedings, Part II Computer Analysis of Images and Patterns: CAIP 2019 International Workshops, ViMaBi and DL-UAV, Salerno, Italy, September 6, 2019, Proceedings Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Salerno, Italy, September 3–5, 2019, Proceedings, Part I Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Salerno, Italy, September 3–5, 2019, Proceedings, Part II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1