Performance improvement of electrodeposited Bi 2 Te 3 thin films using homogeneous electron beam irradiation and thermal annealing

Akito Kawahira, H. Yamamuro, M. Takashiri
{"title":"Performance improvement of electrodeposited Bi 2 Te 3 thin films using homogeneous electron beam irradiation and thermal annealing","authors":"Akito Kawahira, H. Yamamuro, M. Takashiri","doi":"10.2978/JSAS.30103","DOIUrl":null,"url":null,"abstract":"We investigated the structual and thermoelectric properties of electrodeposited Bi 2 Te 3 thin films using a two-step process which combined an homogeneous electron beam irradiation with a thermal annealing. The Bi 2 Te 3 thin films were formed on stainless steel substrates by the potentiostatic electrodeposition. We first performed only the thermal annealing to the thin films to determine the optimal annealing temperarure. As a result, we found that the Bi 2 Te 3 thin films at the annealing temperautre of 300 °C exhibited the highest thermoelectric performance, which was 4.5 times higher than that of the as-deposited thin films. Thus, in the two-step process, the electron beam irradiation dose was changed from 0.36 to 1.08 MGy while the annealing temperature was set at 300°C. As a result, the Bi 2 Te 3 thin films at the EB irradiation dose of 0.36 MGy exhibited highest thermoelectric properties [power factor = 6.1 μW/(cm·K 2 )] which was approximately 20% higher than that of the optimized thin films with only the annealing treatment. Therefore, we conclude that two-step process is beneficial to improve the thermoelectric properties of electrodeposited Bi 2 Te 3 thin films.","PeriodicalId":14991,"journal":{"name":"Journal of Advanced Science","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2978/JSAS.30103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We investigated the structual and thermoelectric properties of electrodeposited Bi 2 Te 3 thin films using a two-step process which combined an homogeneous electron beam irradiation with a thermal annealing. The Bi 2 Te 3 thin films were formed on stainless steel substrates by the potentiostatic electrodeposition. We first performed only the thermal annealing to the thin films to determine the optimal annealing temperarure. As a result, we found that the Bi 2 Te 3 thin films at the annealing temperautre of 300 °C exhibited the highest thermoelectric performance, which was 4.5 times higher than that of the as-deposited thin films. Thus, in the two-step process, the electron beam irradiation dose was changed from 0.36 to 1.08 MGy while the annealing temperature was set at 300°C. As a result, the Bi 2 Te 3 thin films at the EB irradiation dose of 0.36 MGy exhibited highest thermoelectric properties [power factor = 6.1 μW/(cm·K 2 )] which was approximately 20% higher than that of the optimized thin films with only the annealing treatment. Therefore, we conclude that two-step process is beneficial to improve the thermoelectric properties of electrodeposited Bi 2 Te 3 thin films.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用均匀电子束辐照和热退火技术改善电沉积bi2te - 3薄膜的性能
采用均匀电子束辐照和热退火相结合的两步工艺研究了电沉积bi2te 3薄膜的结构和热电性能。采用恒电位电沉积法在不锈钢衬底上制备了bi2te3薄膜。我们首先只对薄膜进行了热退火,以确定最佳退火温度。结果发现,在300℃退火温度下制备的bi2te 3薄膜热电性能最高,是沉积薄膜的4.5倍。因此,在两步工艺中,当退火温度为300℃时,电子束辐照剂量由0.36改变为1.08 MGy。结果表明,在0.36 MGy的EB辐照剂量下,bi2te3薄膜的热电性能最高[功率因数= 6.1 μW/(cm·K 2)],比仅退火处理的薄膜的热电性能提高了约20%。因此,我们认为两步法有利于提高电沉积bi2te 3薄膜的热电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LaNi5/V 薄膜上におけるCO2のメタン化 Selective synthesis of TiO2 nanocrystals and preparation of their dispersions for the electron transport layer of perovskite solar cells カフェインによるコマツナの生理障害の解消方法についての検討 Deposition of AlN thin film at room temperature by pressure gradient sputtering and evaluation of practicality by 3ω method Effect of EB treatment on permeation enhancement of palladium-free hydrogen purification membrane of SUS316L
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1