{"title":"Control Co-Design for Rotor Blades of Floating Offshore Wind Turbines","authors":"Xianping Du, L. Burlion, O. Bilgen","doi":"10.1115/IMECE2020-24605","DOIUrl":null,"url":null,"abstract":"\n This paper aims to demonstrate the application of control co-design methodology for the rotor blades of a floating offshore wind turbine. A 10 MW reference wind turbine model is utilized in the co-design framework. In this paper, the coupling effect between the system, defined by the pre-cone angle, and the controller, defined by pitch angle, is analyzed with a parametric study. The system parameters of the blade are identified by exciting the system with a step input, and by using the step response. The identified model is used to demonstrate the coupling effects of the structural parameters. The control co-design process is implemented to reduce the blade root bending moment by controlling the pitch angle as a function of the pre-cone angle. Utilizing the 10 MW reference model, the proposed control co-design method can reduce the blade root bending moment and attenuate transverse vibrations faster than the original design. Compared to a sequentially designed controller, the co-design demonstrated reduction of the blade root bending moment with similar attenuation time.","PeriodicalId":23585,"journal":{"name":"Volume 7A: Dynamics, Vibration, and Control","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7A: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-24605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper aims to demonstrate the application of control co-design methodology for the rotor blades of a floating offshore wind turbine. A 10 MW reference wind turbine model is utilized in the co-design framework. In this paper, the coupling effect between the system, defined by the pre-cone angle, and the controller, defined by pitch angle, is analyzed with a parametric study. The system parameters of the blade are identified by exciting the system with a step input, and by using the step response. The identified model is used to demonstrate the coupling effects of the structural parameters. The control co-design process is implemented to reduce the blade root bending moment by controlling the pitch angle as a function of the pre-cone angle. Utilizing the 10 MW reference model, the proposed control co-design method can reduce the blade root bending moment and attenuate transverse vibrations faster than the original design. Compared to a sequentially designed controller, the co-design demonstrated reduction of the blade root bending moment with similar attenuation time.