An image embedding in image by a complexity based region segmentation method

M. Niimi, H. Noda, E. Kawaguchi
{"title":"An image embedding in image by a complexity based region segmentation method","authors":"M. Niimi, H. Noda, E. Kawaguchi","doi":"10.1109/ICIP.1997.631986","DOIUrl":null,"url":null,"abstract":"This paper describes a new technique to embed secret data into a dummy image by using image segmentation based on a local complexity measure. The key idea to this approach is that a binary image can be categorized as \"informative\" and \"noise-like\" regions which are segmented by a \"complexity measure\". If the embedding data is noise-like, we can hide it in the noise-like region of the dummy image. If a part of embedding data is simple, then we apply \"image conjugate\" operation to it. This operation transform a simple pattern into a complex pattern. In our experiment, we could embed two color images in a 512/spl times/512 (8 bits/pixel) size gray image (which was dummy) without losing any information. The total amount of the two embedded images was 115 KB, which was about 45% of the dummy image.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"16 1","pages":"74-77 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.631986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

This paper describes a new technique to embed secret data into a dummy image by using image segmentation based on a local complexity measure. The key idea to this approach is that a binary image can be categorized as "informative" and "noise-like" regions which are segmented by a "complexity measure". If the embedding data is noise-like, we can hide it in the noise-like region of the dummy image. If a part of embedding data is simple, then we apply "image conjugate" operation to it. This operation transform a simple pattern into a complex pattern. In our experiment, we could embed two color images in a 512/spl times/512 (8 bits/pixel) size gray image (which was dummy) without losing any information. The total amount of the two embedded images was 115 KB, which was about 45% of the dummy image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于复杂度的区域分割方法实现图像嵌入
本文提出了一种基于局部复杂度度量的图像分割技术,将秘密数据嵌入到虚拟图像中。这种方法的关键思想是,二值图像可以被分类为“信息”和“噪声”区域,这些区域通过“复杂性度量”进行分割。如果嵌入的数据是类噪声的,我们可以将其隐藏在虚拟图像的类噪声区域中。如果某部分嵌入数据比较简单,则对其进行“图像共轭”运算。这个操作将一个简单的模式转换成一个复杂的模式。在我们的实验中,我们可以在512/spl倍/512(8位/像素)大小的灰度图像(这是假的)中嵌入两张彩色图像,而不会丢失任何信息。两个嵌入图像的总大小为115 KB,约为虚拟图像的45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computer Analysis of Images and Patterns: 19th International Conference, CAIP 2021, Virtual Event, September 28–30, 2021, Proceedings, Part I Computer Analysis of Images and Patterns: 19th International Conference, CAIP 2021, Virtual Event, September 28–30, 2021, Proceedings, Part II Computer Analysis of Images and Patterns: CAIP 2019 International Workshops, ViMaBi and DL-UAV, Salerno, Italy, September 6, 2019, Proceedings Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Salerno, Italy, September 3–5, 2019, Proceedings, Part I Computer Analysis of Images and Patterns: 18th International Conference, CAIP 2019, Salerno, Italy, September 3–5, 2019, Proceedings, Part II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1