{"title":"The physical chemistry of Criegee intermediates in the gas phase","authors":"D. Osborn, C. Taatjes","doi":"10.1080/0144235X.2015.1055676","DOIUrl":null,"url":null,"abstract":"Carbonyl oxides, also known as Criegee intermediates, are key intermediates in both gas phase ozonolysis of unsaturated hydrocarbons in the troposphere and solution phase organic synthesis via ozonolysis. Although the study of Criegee intermediates in both arenas has a long history, direct studies in the gas phase have only recently become possible through new methods of generating stabilised Criegee intermediates in sufficient quantities. This advance has catalysed a large number of new experimental and theoretical investigations of Criegee intermediate chemistry. In this article we review the physical chemistry of Criegee intermediates, focusing on their molecular structure, spectroscopy, unimolecular and bimolecular reactions. These recent results have overturned conclusions from some previous studies, while confirming others, and have clarified areas of investigation that will be critical targets for future studies. In addition to expanding our fundamental understanding of Criegee intermediates, the rapidly expanding knowledge base will support increasingly predictive models of their impacts on society.","PeriodicalId":54932,"journal":{"name":"International Reviews in Physical Chemistry","volume":"8 1","pages":"309 - 360"},"PeriodicalIF":2.5000,"publicationDate":"2015-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"133","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Reviews in Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/0144235X.2015.1055676","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 133
Abstract
Carbonyl oxides, also known as Criegee intermediates, are key intermediates in both gas phase ozonolysis of unsaturated hydrocarbons in the troposphere and solution phase organic synthesis via ozonolysis. Although the study of Criegee intermediates in both arenas has a long history, direct studies in the gas phase have only recently become possible through new methods of generating stabilised Criegee intermediates in sufficient quantities. This advance has catalysed a large number of new experimental and theoretical investigations of Criegee intermediate chemistry. In this article we review the physical chemistry of Criegee intermediates, focusing on their molecular structure, spectroscopy, unimolecular and bimolecular reactions. These recent results have overturned conclusions from some previous studies, while confirming others, and have clarified areas of investigation that will be critical targets for future studies. In addition to expanding our fundamental understanding of Criegee intermediates, the rapidly expanding knowledge base will support increasingly predictive models of their impacts on society.
期刊介绍:
International Reviews in Physical Chemistry publishes review articles describing frontier research areas in physical chemistry. Internationally renowned scientists describe their own research in the wider context of the field. The articles are of interest not only to specialists but also to those wishing to read general and authoritative accounts of recent developments in physical chemistry, chemical physics and theoretical chemistry. The journal appeals to research workers, lecturers and research students alike.