Laboratory investigation of flow and turbulent characteristics around permeable and impermeable groynes in a strongly curved meandering channel

K. Indulekha, P. Jayasree, K. Balan
{"title":"Laboratory investigation of flow and turbulent characteristics around permeable and impermeable groynes in a strongly curved meandering channel","authors":"K. Indulekha, P. Jayasree, K. Balan","doi":"10.1080/09715010.2022.2115318","DOIUrl":null,"url":null,"abstract":"ABSTRACT The study investigates the role of cocolog, an eco-friendly material, as groyne, in protecting the river banks in meandering channels. Laboratory experiments were conducted to compare the flow pattern and sediment dynamics in a mobile-bed meandering channel for cocolog (permeable) and impermeable groynes. It is observed that as the permeability increases, the vertical and transverse velocities are seen to be reduced in the groyne fields. The results also indicate that places of maximum scour depth display amplified velocity, turbulent intensity and turbulent kinetic energy. However, considerable reduction in these characteristics is being observed in the case of permeable groynes that have densities varying between 140 and 160 kg/m3. The eroded volume is seen to be reduced by 60% for permeable groynes of medium density compared to the tests done without groynes. Also impermeable groynes exhibit a wider distribution of the maximum values for scour depth, turbulence intensity and turbulent kinetic energy than that of permeable groynes. It is found that the cocolog groynes with suitable density (or permeability) can perform best in meandering channels by dampening the velocity and turbulence of the groyne fields.","PeriodicalId":38206,"journal":{"name":"ISH Journal of Hydraulic Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISH Journal of Hydraulic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09715010.2022.2115318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT The study investigates the role of cocolog, an eco-friendly material, as groyne, in protecting the river banks in meandering channels. Laboratory experiments were conducted to compare the flow pattern and sediment dynamics in a mobile-bed meandering channel for cocolog (permeable) and impermeable groynes. It is observed that as the permeability increases, the vertical and transverse velocities are seen to be reduced in the groyne fields. The results also indicate that places of maximum scour depth display amplified velocity, turbulent intensity and turbulent kinetic energy. However, considerable reduction in these characteristics is being observed in the case of permeable groynes that have densities varying between 140 and 160 kg/m3. The eroded volume is seen to be reduced by 60% for permeable groynes of medium density compared to the tests done without groynes. Also impermeable groynes exhibit a wider distribution of the maximum values for scour depth, turbulence intensity and turbulent kinetic energy than that of permeable groynes. It is found that the cocolog groynes with suitable density (or permeability) can perform best in meandering channels by dampening the velocity and turbulence of the groyne fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强弯曲蜿蜒河道中透水和不透水沟槽周围流动和湍流特性的实验室研究
摘要:本研究探讨了生态友好型材料可可木作为护坡材料在曲流河道中保护河岸的作用。通过室内试验,比较了流动床曲流河道中透水和不透水的水流形态和泥沙动力学。观察到,随着渗透率的增加,垂直和横向速度在砾岩场中减小。结果还表明,最大冲刷深度处的速度、湍流强度和湍流动能均有所放大。然而,在密度在140和160 kg/m3之间变化的渗透性砾岩的情况下,观察到这些特性有相当大的减少。与没有沟槽的试验相比,中密度渗透性沟槽的侵蚀体积减少了60%。在冲刷深度、湍流强度和湍流动能的最大值分布上,不透水的沟槽比透水的沟槽更宽。研究发现,适当密度(或透气性)的cocolog沟槽可以抑制沟槽场的速度和湍流,从而在曲流沟槽中发挥最佳作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ISH Journal of Hydraulic Engineering
ISH Journal of Hydraulic Engineering Engineering-Civil and Structural Engineering
CiteScore
4.30
自引率
0.00%
发文量
59
期刊最新文献
Symmetrical fully coupled numerical model for efficient dam–reservoir interaction analysis in time domain A comparative study on the modeling of soil erosion by USLE, RUSLE, and USPED Potential impacts of saline groundwater pumping on seawater intrusion in a coastal aquifer system Evaluating the impact of porcupine systems in the flow field of the river: a hydrodynamic model study Analysis of morphometric characteristics and prioritization of micro watersheds of Karamnasa River Basin using remote sensing & GIS technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1