Banglong Pan, Hongwei Cheng, Shuhua Du, Hanming Yu, Shaoru Feng, Yi Tang, Juan Du, H. Xie
{"title":"Quantitative Detection of Quartz Sandstone SiO2 Grade Using Polarized Infrared Absorption Spectroscopy with Convolutional Neural Network Model","authors":"Banglong Pan, Hongwei Cheng, Shuhua Du, Hanming Yu, Shaoru Feng, Yi Tang, Juan Du, H. Xie","doi":"10.1155/2023/7807297","DOIUrl":null,"url":null,"abstract":"As an independent characteristic of electromagnetic radiation, the polarization of light is sensitive to the scattering and absorption characteristics of the mineral particles. The combination of polarization and infrared absorption spectroscopy is conducive to rapidly and accurately detecting the SiO2 content of metallurgical sandstone deposits. In this study, the 8–14 μm polarized infrared absorption spectra and the grade of the sandstone ore samples were used to analyse the spectral characteristics of the sandstone powder samples. Principal component analysis (PCA) and the successive projection algorithm (SPA) were used to reduce the dimension of the original data, first-order derivative, reciprocal logarithm, and multivariate scattering correction (MSC) data. Then, generalized regression neural network (GRNN), partial least squares regression (PLSR), and convolutional neural network (CNN) were employed to establish a hyperspectral prediction model of SiO2 grade. The results show that the quantitative model by the PCA-CNN algorithm has the better prediction precision for the reciprocal logarithm data, with a coefficient of determination (R2), root mean square error (RMSE), and ratio of performance to interquartile range (RPIQ) of 0.907, 0.023, and 5.11, respectively. This method indicates that the polarized infrared absorption spectra and the PCA-CNN model can provide a more robust and significant spectral interpretation than single infrared spectra, and it is expected to be applied to any high-purity quartz deposit type for in situ and rapid analysis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2023/7807297","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As an independent characteristic of electromagnetic radiation, the polarization of light is sensitive to the scattering and absorption characteristics of the mineral particles. The combination of polarization and infrared absorption spectroscopy is conducive to rapidly and accurately detecting the SiO2 content of metallurgical sandstone deposits. In this study, the 8–14 μm polarized infrared absorption spectra and the grade of the sandstone ore samples were used to analyse the spectral characteristics of the sandstone powder samples. Principal component analysis (PCA) and the successive projection algorithm (SPA) were used to reduce the dimension of the original data, first-order derivative, reciprocal logarithm, and multivariate scattering correction (MSC) data. Then, generalized regression neural network (GRNN), partial least squares regression (PLSR), and convolutional neural network (CNN) were employed to establish a hyperspectral prediction model of SiO2 grade. The results show that the quantitative model by the PCA-CNN algorithm has the better prediction precision for the reciprocal logarithm data, with a coefficient of determination (R2), root mean square error (RMSE), and ratio of performance to interquartile range (RPIQ) of 0.907, 0.023, and 5.11, respectively. This method indicates that the polarized infrared absorption spectra and the PCA-CNN model can provide a more robust and significant spectral interpretation than single infrared spectra, and it is expected to be applied to any high-purity quartz deposit type for in situ and rapid analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.