Forging Productive Human-Robot Partnerships Through Task Training

IF 4.2 Q2 ROBOTICS ACM Transactions on Human-Robot Interaction Pub Date : 2023-08-31 DOI:10.1145/3611657
Maia Stiber, Yuxiang Gao, R. Taylor, Chien-Ming Huang
{"title":"Forging Productive Human-Robot Partnerships Through Task Training","authors":"Maia Stiber, Yuxiang Gao, R. Taylor, Chien-Ming Huang","doi":"10.1145/3611657","DOIUrl":null,"url":null,"abstract":"Productive human-robot partnerships are vital to successful integration of assistive robots into everyday life. While prior research has explored techniques to facilitate collaboration during human-robot interaction, the work described here aims to forge productive partnerships prior to human-robot interaction, drawing upon team building activities’ aid in establishing effective human teams. Through a 2 (group membership: ingroup and outgroup) × 3 (robot error: main task errors, side task errors, and no errors) online study (N = 62), we demonstrate that 1) a non-social pre-task exercise can help form ingroup relationships; 2) an ingroup robot is perceived as a better, more committed teammate than an outgroup robot (despite the two behaving identically); and 3) participants are more tolerant of negative outcomes when working with an ingroup robot. We discuss how pre-task exercises may serve as an active task failure mitigation strategy.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3611657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 1

Abstract

Productive human-robot partnerships are vital to successful integration of assistive robots into everyday life. While prior research has explored techniques to facilitate collaboration during human-robot interaction, the work described here aims to forge productive partnerships prior to human-robot interaction, drawing upon team building activities’ aid in establishing effective human teams. Through a 2 (group membership: ingroup and outgroup) × 3 (robot error: main task errors, side task errors, and no errors) online study (N = 62), we demonstrate that 1) a non-social pre-task exercise can help form ingroup relationships; 2) an ingroup robot is perceived as a better, more committed teammate than an outgroup robot (despite the two behaving identically); and 3) participants are more tolerant of negative outcomes when working with an ingroup robot. We discuss how pre-task exercises may serve as an active task failure mitigation strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过任务训练建立富有成效的人机合作伙伴关系
高效的人机合作关系对于将辅助机器人成功融入日常生活至关重要。虽然之前的研究已经探索了在人机交互过程中促进协作的技术,但这里描述的工作旨在在人机交互之前建立富有成效的伙伴关系,利用团队建设活动帮助建立有效的人类团队。通过一项2(群体成员:内群体和外群体)× 3(机器人错误:主任务错误、副任务错误和无错误)的在线研究(N = 62),我们证明了1)非社会任务前练习可以帮助形成内群体关系;2)内组机器人被认为是比外组机器人更好、更忠诚的队友(尽管两者的行为相同);3)参与者在与内部机器人合作时更能容忍负面结果。我们讨论了任务前练习如何作为一种主动的任务失败缓解策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Human-Robot Interaction
ACM Transactions on Human-Robot Interaction Computer Science-Artificial Intelligence
CiteScore
7.70
自引率
5.90%
发文量
65
期刊介绍: ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain. THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.
期刊最新文献
Influence of Simulation and Interactivity on Human Perceptions of a Robot During Navigation Tasks Converging Measures and an Emergent Model: A Meta-Analysis of Human-Machine Trust Questionnaires Generating Pattern-Based Conventions for Predictable Planning in Human-Robot Collaboration Classification of Co-manipulation Modus with Human-Human Teams for Future Application to Human-Robot Systems Perceptions of a Robot that Interleaves Tasks for Multiple Users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1