TEEPA: a timely-aware elastic parallel architecture

J. Costa, P. Martins, J. Cecílio, P. Furtado
{"title":"TEEPA: a timely-aware elastic parallel architecture","authors":"J. Costa, P. Martins, J. Cecílio, P. Furtado","doi":"10.1145/2351476.2351480","DOIUrl":null,"url":null,"abstract":"Parallel Shared-Nothing architectures are frequently used to handle large star-schema Data Warehouses (DW). The continuous increase in data volume and the star-schema storage organization introduce severe limitations to scalability due to the well-known parallel join issues and the resulting need to use solutions such as on-the fly repartitioning of data or intermediate results, or massive replication of large data sets that still need to be joined locally, constraining their ability to deliver fast results. Parallelism may improve query performance, however some business decisions may require that query results be timely available which, even with additional parallelism and significant upgrade costs (both monetary and due to disturbance of normal operations), cannot be guaranteed. We propose a Timely-aware Execution Parallel Architecture (TEEPA) which balances data load and query processing among an elastic set of non-dedicated heterogeneous nodes in order to provide scale-out performance and timely query results. Data is allocated using adaptable storage models to minimize join costs (the major uncertainty factor) which best fit the nodes' capabilities, while preserving a consistent logical view of the star-schema. We present experimental evaluation of TEEPA and demonstrate its ability to provide timely results.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"37 1","pages":"24-31"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2351476.2351480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Parallel Shared-Nothing architectures are frequently used to handle large star-schema Data Warehouses (DW). The continuous increase in data volume and the star-schema storage organization introduce severe limitations to scalability due to the well-known parallel join issues and the resulting need to use solutions such as on-the fly repartitioning of data or intermediate results, or massive replication of large data sets that still need to be joined locally, constraining their ability to deliver fast results. Parallelism may improve query performance, however some business decisions may require that query results be timely available which, even with additional parallelism and significant upgrade costs (both monetary and due to disturbance of normal operations), cannot be guaranteed. We propose a Timely-aware Execution Parallel Architecture (TEEPA) which balances data load and query processing among an elastic set of non-dedicated heterogeneous nodes in order to provide scale-out performance and timely query results. Data is allocated using adaptable storage models to minimize join costs (the major uncertainty factor) which best fit the nodes' capabilities, while preserving a consistent logical view of the star-schema. We present experimental evaluation of TEEPA and demonstrate its ability to provide timely results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TEEPA:一个时效性的弹性并行架构
并行无共享架构经常用于处理大型星型模式数据仓库(DW)。数据量的持续增长和星型模式存储组织给可伸缩性带来了严重的限制,这是由于众所周知的并行连接问题,以及因此需要使用诸如数据或中间结果的动态重分区,或仍然需要在本地连接的大型数据集的大规模复制等解决方案,从而限制了它们交付快速结果的能力。并行性可以提高查询性能,但是一些业务决策可能要求查询结果及时可用,即使有额外的并行性和巨大的升级成本(包括金钱和正常操作的干扰),也不能保证查询结果及时可用。我们提出了一种实时感知的执行并行架构(TEEPA),它在一组非专用异构节点之间平衡数据负载和查询处理,以提供横向扩展性能和及时的查询结果。使用可适应的存储模型来分配数据,以最小化最适合节点功能的连接成本(主要的不确定因素),同时保留星型模式的一致逻辑视图。我们提出了TEEPA的实验评估,并证明了其提供及时结果的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A method combining improved Mahalanobis distance and adversarial autoencoder to detect abnormal network traffic Proceedings of the International Database Engineered Applications Symposium Conference, IDEAS 2023, Heraklion, Crete, Greece, May 5-7, 2023 IDEAS'22: International Database Engineered Applications Symposium, Budapest, Hungary, August 22 - 24, 2022 IDEAS 2021: 25th International Database Engineering & Applications Symposium, Montreal, QC, Canada, July 14-16, 2021 IDEAS 2020: 24th International Database Engineering & Applications Symposium, Seoul, Republic of Korea, August 12-14, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1