Giant Piezoelectric Properties of ZnO Film Doped with Acceptor-Donor Ionic Pair

Chang Gao, Yu Zhao, Weili Li, Yulong Qiao, Wang Zhao, Lu Jing, J. Sheng, W. Fei
{"title":"Giant Piezoelectric Properties of ZnO Film Doped with Acceptor-Donor Ionic Pair","authors":"Chang Gao, Yu Zhao, Weili Li, Yulong Qiao, Wang Zhao, Lu Jing, J. Sheng, W. Fei","doi":"10.2139/ssrn.3746789","DOIUrl":null,"url":null,"abstract":"Piezoelectric thin film materials are high energy density materials that scale very favorably upon miniaturization and that has led to an ever-growing interest for MEMS applications. Thus extensive investigation of lead-free piezoelectric has been triggered out of environmental awareness. Here, a concrete lead-free paradigm is presented, Zn1-2x(FexLix)O thin films, which exhibits a splendid d33* value (~415 pm/V) and electrostrain (~0.68%) after thermal-electric treatment in the co-doped film with the x value of 0.06. It is considered that the local lattice distortion generated by preferential distributed Fe3+-Li+ ionic pairs is responsible for the outstanding piezoelectric properties and obvious ferroelectricity response. The defect engineering strategy presented in this work open a new development window for obtaining excellent piezoelectricity in a wide range of binary metal oxide systems and have profound implications for the potential utilization of lead-free piezoelectrics in microelectromechanical systems and surface acoustic wave devices.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3746789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric thin film materials are high energy density materials that scale very favorably upon miniaturization and that has led to an ever-growing interest for MEMS applications. Thus extensive investigation of lead-free piezoelectric has been triggered out of environmental awareness. Here, a concrete lead-free paradigm is presented, Zn1-2x(FexLix)O thin films, which exhibits a splendid d33* value (~415 pm/V) and electrostrain (~0.68%) after thermal-electric treatment in the co-doped film with the x value of 0.06. It is considered that the local lattice distortion generated by preferential distributed Fe3+-Li+ ionic pairs is responsible for the outstanding piezoelectric properties and obvious ferroelectricity response. The defect engineering strategy presented in this work open a new development window for obtaining excellent piezoelectricity in a wide range of binary metal oxide systems and have profound implications for the potential utilization of lead-free piezoelectrics in microelectromechanical systems and surface acoustic wave devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受体-供体离子对掺杂ZnO薄膜的巨压电性能
压电薄膜材料是一种高能量密度的材料,具有非常有利的微型化特性,因此对MEMS应用的兴趣日益浓厚。因此,出于环保意识,无铅压电材料引发了广泛的研究。本文提出了一种具体的无铅模式,即Zn1-2x(FexLix)O薄膜,在x值为0.06的共掺杂薄膜中进行热电处理后,表现出良好的d33*值(~415 pm/V)和电应变(~0.68%)。认为Fe3+-Li+离子对优先分布所产生的局域晶格畸变是优异的压电性能和明显的铁电响应的原因。本工作提出的缺陷工程策略为在广泛的二元金属氧化物体系中获得优异的压电性打开了新的发展窗口,并对无铅压电材料在微机电系统和表面声波器件中的潜在应用具有深远的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Racemic Dimers as Models of Chiral Macrocycles Self-Assembled on Pyrolytic Graphite Effect of Resveratrol on Sn-Fe Alloy Electrodeposition Anisotropic Grain Boundary Area and Energy Distributions in Tungsten A Novel Method for Densification of Titanium Using Hydrogenation-Induced Expansion Under Constrained Conditions Determination of the Paratellurite Stiffness Constants Temperature Coefficients by the Acousto-Optic Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1