The improvement of a fuzzy neural network based on backpropagation

Qiang Hua, M. Ha
{"title":"The improvement of a fuzzy neural network based on backpropagation","authors":"Qiang Hua, M. Ha","doi":"10.1109/ICMLC.2002.1175437","DOIUrl":null,"url":null,"abstract":"Some discussions on the fuzzy neural network architecture and algorithm have been put forward, whose weights are given as special fuzzy numbers, such as triangular fuzzy numbers. In this paper, we introduce the conception of strong L-R type fuzzy number, and derive a learning algorithm based on BP algorithm via level sets of strong L-R type fuzzy numbers. The special fuzzy number is weakened to the common case. Then the range of application is enlarged. Finally, the initial experiment in fuzzy classification is shown.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"23 1","pages":"2237-2239 vol.4"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1175437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Some discussions on the fuzzy neural network architecture and algorithm have been put forward, whose weights are given as special fuzzy numbers, such as triangular fuzzy numbers. In this paper, we introduce the conception of strong L-R type fuzzy number, and derive a learning algorithm based on BP algorithm via level sets of strong L-R type fuzzy numbers. The special fuzzy number is weakened to the common case. Then the range of application is enlarged. Finally, the initial experiment in fuzzy classification is shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于反向传播的模糊神经网络的改进
本文对模糊神经网络的结构和算法进行了讨论,并将其权值定义为特殊模糊数,如三角模糊数。本文引入了强L-R型模糊数的概念,并通过强L-R型模糊数的水平集导出了一种基于BP算法的学习算法。将特殊模糊数弱化为一般情况。从而扩大了应用范围。最后给出了模糊分类的初步实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary Talk: Digital-Twin Fluid Engineering APPLYING MACHINE LEARNING TECHNIQUES IN DETECTING BACTERIAL VAGINOSIS. OPTICAL COHERENCE TOMOGRAPHY HEART TUBE IMAGE DENOISING BASED ON CONTOURLET TRANSFORM. The multistage support vector machine Anti-control of chaos based on fuzzy neural networks inverse system method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1