Snap Load Induced by Slack-Taut Process in a Taut Mooring Line

D. Qiao, Wei Tang, Yunfei Suo, Jun Yan, Li Yugang, Zhou Daocheng
{"title":"Snap Load Induced by Slack-Taut Process in a Taut Mooring Line","authors":"D. Qiao, Wei Tang, Yunfei Suo, Jun Yan, Li Yugang, Zhou Daocheng","doi":"10.1115/omae2019-95016","DOIUrl":null,"url":null,"abstract":"\n The large amplitude motion of floating structures could cause slack-taut transformation in the taut mooring system, which may result in snap load. The dynamic finite element analysis model is established to simulate the slack-taut process through adding a series of sinusoidal excitation with different amplitudes and frequencies to the upper end of a taut mooring line. During the slack-taut process, the minimum dynamic tension could be close to zero, and the maximum dynamic tension could come up to several times of pretension. The change laws of dynamic tension during the slack-taut process are compared and summarized. The calculation results show that the phenomenon of slack-taut could occur when the amplitude and frequency of excitation reach some certain value. The mooring line tension spectra show that the doubling and higher frequency components appear in addition to the frequency of excitation. The results could provide a reference for further investigating on the mechanism of snap load and the design of mooring system.","PeriodicalId":23567,"journal":{"name":"Volume 1: Offshore Technology; Offshore Geotechnics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology; Offshore Geotechnics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-95016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The large amplitude motion of floating structures could cause slack-taut transformation in the taut mooring system, which may result in snap load. The dynamic finite element analysis model is established to simulate the slack-taut process through adding a series of sinusoidal excitation with different amplitudes and frequencies to the upper end of a taut mooring line. During the slack-taut process, the minimum dynamic tension could be close to zero, and the maximum dynamic tension could come up to several times of pretension. The change laws of dynamic tension during the slack-taut process are compared and summarized. The calculation results show that the phenomenon of slack-taut could occur when the amplitude and frequency of excitation reach some certain value. The mooring line tension spectra show that the doubling and higher frequency components appear in addition to the frequency of excitation. The results could provide a reference for further investigating on the mechanism of snap load and the design of mooring system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系泊缆绳松弛-拉紧过程引起的弹跳载荷
在张力系泊系统中,浮体结构的大振幅运动会引起懒散-张力的转变,从而产生弹跳载荷。通过在拉紧系缆的上端加入一系列不同幅值和频率的正弦激励,建立动力有限元分析模型,模拟系缆的松弛-拉紧过程。在松拉过程中,最小动张力可以接近于零,最大动张力可以达到预张力的几倍。对比总结了松拉过程中动张力的变化规律。计算结果表明,当激励的幅值和频率达到一定值时,会出现松绷现象。系缆张力谱分析表明,除激励频率外,系缆张力谱还存在倍频和高频分量。研究结果可为进一步研究瞬时载荷作用机理和系泊系统设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Different Pile Installation Methods on Dense Sand Estimating Second Order Wave Drift Forces and Moments for Calculating DP Capability Plots A Conjoint Analysis of the Stability and Time-Domain Analysis on Floating Platform During Mooring Line Breaking Wave Propagation in CFD-Based Numerical Wave Tank CFD Analysis on Hydrodynamic Characteristics for Optimizing Torpedo Anchors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1