Bayesian Regression for Solar Power Forecasting

Kaustubha H. Shedbalkar, D. More
{"title":"Bayesian Regression for Solar Power Forecasting","authors":"Kaustubha H. Shedbalkar, D. More","doi":"10.1109/AISP53593.2022.9760559","DOIUrl":null,"url":null,"abstract":"The solar power forecasting is important factor that provides support to planning terms of power distribution organizations. The time based forecasting is feasible due to dependable outcome of solar power generation on weather status. The weather status itself is prediction method involving approach which is becoming considerably accurate these days. The power generation outcome is the multiple parameter regression model. This paper shows the experimental outcome of solar power generation forecasting with linear, ridge and Bayesian regression models. The best performing Bayesian model is compared with other existing methods in which Bayesian model outperforms in terms of mean square error for 15 minutes time interval data in batch processing approach.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"122 4 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The solar power forecasting is important factor that provides support to planning terms of power distribution organizations. The time based forecasting is feasible due to dependable outcome of solar power generation on weather status. The weather status itself is prediction method involving approach which is becoming considerably accurate these days. The power generation outcome is the multiple parameter regression model. This paper shows the experimental outcome of solar power generation forecasting with linear, ridge and Bayesian regression models. The best performing Bayesian model is compared with other existing methods in which Bayesian model outperforms in terms of mean square error for 15 minutes time interval data in batch processing approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳能发电预测的贝叶斯回归
太阳能发电预测是为配电网规划提供支持的重要因素。由于太阳能发电对天气状况的预测结果可靠,因此基于时间的预测是可行的。天气状况本身就是一种预报方法,现在已经变得相当准确了。发电结果为多参数回归模型。本文给出了用线性回归模型、脊回归模型和贝叶斯回归模型进行太阳能发电预测的实验结果。在批处理方法中,贝叶斯模型在15分钟时间间隔数据的均方误差方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 5.80 GHz Harmonic Suppression Antenna for Wireless Energy Transfer Application Crack identification from concrete structure images using deep transfer learning Energy Efficient VoD with Cache in TWDM PON ring Blockchain-based IoT Device Security A New Dynamic Method of Multiprocessor Scheduling using Modified Crow Search Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1