{"title":"The Geometry of Community Detection via the MMSE Matrix","authors":"G. Reeves, Vaishakhi Mayya, A. Volfovsky","doi":"10.1109/ISIT.2019.8849594","DOIUrl":null,"url":null,"abstract":"The information-theoretic limits of community detection have been studied extensively for network models with high levels of symmetry or homogeneity. The contribution of this paper is to study a broader class of network models that allow for variability in the sizes and behaviors of the different communities, and thus better reflect the behaviors observed in real-world networks. Our results show that the ability to detect communities can be described succinctly in terms of a matrix of effective signal-to-noise ratios that provides a geometrical representation of the relationships between the different communities. This characterization follows from a matrix version of the I-MMSE relationship and generalizes the concept of an effective scalar signal-to-noise ratio introduced in previous work. We provide explicit formulas for the asymptotic per-node mutual information and upper bounds on the minimum mean-squared error. The theoretical results are supported by numerical simulations.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"8 1","pages":"400-404"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The information-theoretic limits of community detection have been studied extensively for network models with high levels of symmetry or homogeneity. The contribution of this paper is to study a broader class of network models that allow for variability in the sizes and behaviors of the different communities, and thus better reflect the behaviors observed in real-world networks. Our results show that the ability to detect communities can be described succinctly in terms of a matrix of effective signal-to-noise ratios that provides a geometrical representation of the relationships between the different communities. This characterization follows from a matrix version of the I-MMSE relationship and generalizes the concept of an effective scalar signal-to-noise ratio introduced in previous work. We provide explicit formulas for the asymptotic per-node mutual information and upper bounds on the minimum mean-squared error. The theoretical results are supported by numerical simulations.