{"title":"Human Factors in Domain Adaptation Within the Oil and Gas Industry","authors":"I. Ershaghi, Milad A. Ershaghi, Fatimah Al-Ruwai","doi":"10.2118/204820-ms","DOIUrl":null,"url":null,"abstract":"\n A serious issue facing many oil and gas companies is the uneasiness among the traditional engineering talents to learn and adapt to the changes brought about by digital transformation. The transformation has been expected as the human being is limited in analyzing problems that are multidimensional and there are difficulties in doing analysis on a large scale. But many companies face human factor issues in preparing the traditional staff to realize the potential of adaptation of AI (Artificial Intelligence) based decision making.\n As decision-making in oil and gas industry is growing in complexity, acceptance of digital based solutions remains low. One reason can be the lack of adequate interpretability. The data scientist and the end-users should be able to assure that the prediction is based on correct set of assumptions and conform to accepted domain expertise knowledge. A proper set of questions to the experts can include inquiries such as where the information comes from, why certain information is pertinent, what is the relationship of components and also would several experts agree on such an assignment. Among many, one of the main concerns is the trustworthiness of applying AI technologies\n There are limitations of current continuing education approaches, and we suggest improvements that can help in such transformation. It takes an intersection of human judgment and the power of computer technology to make a step-change in accepting predictions by (ML) machine learning. A deep understanding of the problem, coupled with an awareness of the key data, is always the starting point. The best solution strategy in petroleum engineering adaptation of digital technologies requires effective participation of the domain experts in algorithmic-based preprocessing of data. Application of various digital solutions and technologies can then be tested to select the best solution strategies. For illustration purposes, we examine a few examples where digital technologies have significant potentials. Yet in all, domain expertise and data preprocessing are essential for quality control purposes","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204820-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A serious issue facing many oil and gas companies is the uneasiness among the traditional engineering talents to learn and adapt to the changes brought about by digital transformation. The transformation has been expected as the human being is limited in analyzing problems that are multidimensional and there are difficulties in doing analysis on a large scale. But many companies face human factor issues in preparing the traditional staff to realize the potential of adaptation of AI (Artificial Intelligence) based decision making.
As decision-making in oil and gas industry is growing in complexity, acceptance of digital based solutions remains low. One reason can be the lack of adequate interpretability. The data scientist and the end-users should be able to assure that the prediction is based on correct set of assumptions and conform to accepted domain expertise knowledge. A proper set of questions to the experts can include inquiries such as where the information comes from, why certain information is pertinent, what is the relationship of components and also would several experts agree on such an assignment. Among many, one of the main concerns is the trustworthiness of applying AI technologies
There are limitations of current continuing education approaches, and we suggest improvements that can help in such transformation. It takes an intersection of human judgment and the power of computer technology to make a step-change in accepting predictions by (ML) machine learning. A deep understanding of the problem, coupled with an awareness of the key data, is always the starting point. The best solution strategy in petroleum engineering adaptation of digital technologies requires effective participation of the domain experts in algorithmic-based preprocessing of data. Application of various digital solutions and technologies can then be tested to select the best solution strategies. For illustration purposes, we examine a few examples where digital technologies have significant potentials. Yet in all, domain expertise and data preprocessing are essential for quality control purposes