{"title":"Kubernetes: Towards Deployment of Distributed IoT Applications in Fog Computing","authors":"Paridhika Kayal","doi":"10.1145/3375555.3383585","DOIUrl":null,"url":null,"abstract":"Fog computing has been regarded as an ideal platform for distributed and diverse IoT applications. Fog environment consists of a network of fog nodes and IoT applications are composed of containerized microservices communicating with each other. Distribution and optimization of containerized IoT applications in the fog environment is a recent line of research. Our work took Kubernetes as an orchestrator that instantiates, manages, and terminates containers in multiple-host environments for IoT applications, where each host acts as a fog node. This paper demonstrates the industrial feasibility and practicality of deploying and managing containerized IoT applications on real devices (raspberry pis and PCs) by utilizing commercial software tools (Docker, WeaveNet). The demonstration will show that the application's functionality is not affected by the distribution of communicating microservices on different nodes.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375555.3383585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Fog computing has been regarded as an ideal platform for distributed and diverse IoT applications. Fog environment consists of a network of fog nodes and IoT applications are composed of containerized microservices communicating with each other. Distribution and optimization of containerized IoT applications in the fog environment is a recent line of research. Our work took Kubernetes as an orchestrator that instantiates, manages, and terminates containers in multiple-host environments for IoT applications, where each host acts as a fog node. This paper demonstrates the industrial feasibility and practicality of deploying and managing containerized IoT applications on real devices (raspberry pis and PCs) by utilizing commercial software tools (Docker, WeaveNet). The demonstration will show that the application's functionality is not affected by the distribution of communicating microservices on different nodes.