A Novel Spatial-Multiplexing OFDM System with Transmit Diversity Based on SFBC

Zhe Chen, Yongyu Chang, Dacheng Yang
{"title":"A Novel Spatial-Multiplexing OFDM System with Transmit Diversity Based on SFBC","authors":"Zhe Chen, Yongyu Chang, Dacheng Yang","doi":"10.1109/ICC.2010.5502823","DOIUrl":null,"url":null,"abstract":"A novel spatial-multiplexing orthogonal frequency- division multiplexing (OFDM) transmission system with transmit diversity provided by space-frequency block code (SFBC) is proposed in this paper. The proposed scheme combines Alamouti scheme and Bell Labs layered space-time (BLAST) together, thus can achieve transmit diversity and spatial multiplexing gains altogether. Two-step iterative detection algorithm is also proposed for this system, in which MMSE detection is performed firstly and then SFBC decoding coupled with successive interference cancellation (SIC) is performed separately and iteratively for each layer. Simulation results show that the proposed system with iterative detection algorithm can achieve better tradeoff between transmission rate and bit error rate (BER) performance than existing multiple-input multiple-output (MIMO) OFDM systems.","PeriodicalId":6405,"journal":{"name":"2010 IEEE International Conference on Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2010.5502823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A novel spatial-multiplexing orthogonal frequency- division multiplexing (OFDM) transmission system with transmit diversity provided by space-frequency block code (SFBC) is proposed in this paper. The proposed scheme combines Alamouti scheme and Bell Labs layered space-time (BLAST) together, thus can achieve transmit diversity and spatial multiplexing gains altogether. Two-step iterative detection algorithm is also proposed for this system, in which MMSE detection is performed firstly and then SFBC decoding coupled with successive interference cancellation (SIC) is performed separately and iteratively for each layer. Simulation results show that the proposed system with iterative detection algorithm can achieve better tradeoff between transmission rate and bit error rate (BER) performance than existing multiple-input multiple-output (MIMO) OFDM systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SFBC的新型发射分集空间复用OFDM系统
提出了一种由空频分组码(SFBC)提供发射分集的空间复用正交频分复用(OFDM)传输系统。该方案将Alamouti方案和Bell Labs分层时空(BLAST)技术结合在一起,可以同时实现发射分集和空间复用增益。针对该系统提出了两步迭代检测算法,首先进行MMSE检测,然后对每一层分别迭代地进行SFBC解码耦合连续干扰消除(SIC)。仿真结果表明,与现有的多输入多输出(MIMO) OFDM系统相比,采用迭代检测算法的OFDM系统在传输速率和误码率(BER)性能之间取得了更好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Optimal Server Selection Algorithm for P2P IPTV over Fiber to the Node (FTTN) Networks Joint Discrete Power-Level and Delay Optimization for Network Coded Wireless Communications Throughput and Stability Improvements of Slotted ALOHA Based Wireless Networks under the Random Packet Destruction Dos Attack TOA Based Joint Synchronization and Localization Amplify-And-Forward MIMO Relaying with OSTBC over Nakagami-m Fading Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1