Methods of controlled formation of instabilities during the electrical explosion of thin foils

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Matter and Radiation at Extremes Pub Date : 2023-07-18 DOI:10.1063/5.0146820
T. Shelkovenko, I. N. Tilikin, A. Oginov, A. R. Mingaleev, V. Romanova, S. Pikuz
{"title":"Methods of controlled formation of instabilities during the electrical explosion of thin foils","authors":"T. Shelkovenko, I. N. Tilikin, A. Oginov, A. R. Mingaleev, V. Romanova, S. Pikuz","doi":"10.1063/5.0146820","DOIUrl":null,"url":null,"abstract":"The results of a study of the electrical explosion of aluminum foils with an artificial periodic surface structure created by laser engraving are presented. Experiments were carried out on pulsed high-current generators BIN (270 kA, 300 kV, 100 ns) and KING (200 kA, 40 kV, 200 ns) with Al foil of thicknesses 16 and 4 μm, respectively. Images of the exploded foils were recorded by point projection radiography in the radiation from hybrid X-pinches. It is found that the application of an artificial periodic structure to the foil leads to a much more uniform and well-defined periodic structure of the exploded foil. Images recorded in the UV range using a microchannel-plate-intensified detector show that the radiation from a surface-modified foil is more uniform along the entire length and width of the foil than that from a foil without modification.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"10 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0146820","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The results of a study of the electrical explosion of aluminum foils with an artificial periodic surface structure created by laser engraving are presented. Experiments were carried out on pulsed high-current generators BIN (270 kA, 300 kV, 100 ns) and KING (200 kA, 40 kV, 200 ns) with Al foil of thicknesses 16 and 4 μm, respectively. Images of the exploded foils were recorded by point projection radiography in the radiation from hybrid X-pinches. It is found that the application of an artificial periodic structure to the foil leads to a much more uniform and well-defined periodic structure of the exploded foil. Images recorded in the UV range using a microchannel-plate-intensified detector show that the radiation from a surface-modified foil is more uniform along the entire length and width of the foil than that from a foil without modification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
控制薄箔电爆炸时不稳定性形成的方法
介绍了激光雕刻人工周期表面结构铝箔的电爆炸研究结果。实验采用厚度为16 μm和4 μm的Al箔,分别在脉冲大电流发生器BIN (270 kA, 300 kV, 100 ns)和KING (200 kA, 40 kV, 200 ns)上进行。爆炸箔的图像被记录在点投影射线摄影从混合x -掐的辐射。研究发现,在爆炸箔上应用人工周期结构可以使爆炸箔的周期结构更加均匀和明确。使用微通道板增强探测器在紫外范围内记录的图像表明,表面改性箔的辐射沿箔的整个长度和宽度比未改性箔的辐射更均匀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
期刊最新文献
Compact laser wakefield acceleration toward high energy with micro-plasma parabola Hollow ion atomic structure and X-ray emission in dense hot plasmas Exotic compounds of monovalent calcium synthesized at high pressure Experimental measurements of gamma-photon production and estimation of electron/positron production on the PETAL laser facility Benchmark simulations of radiative transfer in participating binary stochastic mixtures in two dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1