Support parameters optimization and engineering application of roadway with broken-expand surrounding rock in deep

IF 1.3 Q3 Earth and Planetary Sciences Mining Science Pub Date : 2017-01-01 DOI:10.5277/MSC172415
Wei-jian Yu, Genshui Wu
{"title":"Support parameters optimization and engineering application of roadway with broken-expand surrounding rock in deep","authors":"Wei-jian Yu, Genshui Wu","doi":"10.5277/MSC172415","DOIUrl":null,"url":null,"abstract":"Aiming at the deformation characteristics and the support problem of deep high stress broken-expand surrounding rock, the secondary support of the deep roadway engineering of Fenglong coal mine in Jiangxi Province, China, is carried out to optimize the parameters. First of all, according to the characteristics of deep roadway deformation in Fenglong coal mine, the specific support scheme was put forward on the basis of the original support, then, the secondary support parameters and the support time are designed. The softening strength parameters of the surrounding rock in the roadway are obtained by using the piecewise linear strain softening model and the dilatancy angle of the rock mass. Considering the strength effect of cable anchor, the calculation equation and support strength index ID concept of anchor cable are put forward, and the corrected calculation parameters of anchorage effect are given. Then, the numerical calculation is carried out for 16 schemes, meanwhile, the optimal scheme of the comprehensive evaluation index Es of roadway engineering stability is adopted. The influence of different anchoring effect on the stability of roadway and different secondary displacement value on the stability of roadway are analyzed respectively. Finally, the optimized support scheme is used to carry out the engineering practice, the results of monitoring the deformation of roadway by cross method show that the deformation value is within the controllable range, which can better control the roadway deformation.","PeriodicalId":43629,"journal":{"name":"Mining Science","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5277/MSC172415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Aiming at the deformation characteristics and the support problem of deep high stress broken-expand surrounding rock, the secondary support of the deep roadway engineering of Fenglong coal mine in Jiangxi Province, China, is carried out to optimize the parameters. First of all, according to the characteristics of deep roadway deformation in Fenglong coal mine, the specific support scheme was put forward on the basis of the original support, then, the secondary support parameters and the support time are designed. The softening strength parameters of the surrounding rock in the roadway are obtained by using the piecewise linear strain softening model and the dilatancy angle of the rock mass. Considering the strength effect of cable anchor, the calculation equation and support strength index ID concept of anchor cable are put forward, and the corrected calculation parameters of anchorage effect are given. Then, the numerical calculation is carried out for 16 schemes, meanwhile, the optimal scheme of the comprehensive evaluation index Es of roadway engineering stability is adopted. The influence of different anchoring effect on the stability of roadway and different secondary displacement value on the stability of roadway are analyzed respectively. Finally, the optimized support scheme is used to carry out the engineering practice, the results of monitoring the deformation of roadway by cross method show that the deformation value is within the controllable range, which can better control the roadway deformation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深部破碎膨胀围岩巷道支护参数优化及工程应用
针对深部高应力破碎膨胀围岩的变形特点及支护问题,对江西丰龙煤矿深部巷道工程进行了二次支护,并对支护参数进行了优化。首先,根据丰龙煤矿深部巷道变形特点,在原有支护的基础上提出了具体支护方案,然后对二次支护参数和支护时间进行了设计。采用分段线性应变软化模型和岩体剪胀角,得到巷道围岩软化强度参数。考虑锚索的强度效应,提出了锚索的计算公式和支护强度指标ID概念,并给出了锚索效应的修正计算参数。然后对16种方案进行了数值计算,同时采用巷道工程稳定性综合评价指标Es的最优方案。分别分析了不同锚固效果对巷道稳定性的影响和不同二次位移值对巷道稳定性的影响。最后,将优化后的支护方案应用于工程实践,十字法监测巷道变形结果表明,巷道变形值在可控范围内,能较好地控制巷道变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mining Science
Mining Science MINING & MINERAL PROCESSING-
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Mining Scince. Scientific Papers of the Department Geoengineering, Mining and Geology of the Wroclaw University of Technology. The journal publishes original papers on mining and geology, geo-engineering and the related issues. The journal is devoted to the following topics: fundamental research in mining, underground and open-cast mining technologies, blasting technology, design and construction of mines, geomechanics and geotechnical engineering, mine ventilation, fluid mechanics and its application in mining, mining machinery and condition monitoring, mineral processing, environmental protection and waste utilization. The journal also accepts papers concerns geoengineering which is a sciences covering mining construction, geotechnical engineering, GIS, and earth sciences.
期刊最新文献
Analyzing method to evaluate effect of roadway pressure relief Influence of pick layouts on the performance of bolter miner cutting head Optimizing splice geometry in multiply conveyor belts with respect to stress in adhesive bonds Non-destructive characterisation of mortars reinforced with various fibres exposed to high temperature Application of hydrochemistry for inrush water source identification in coal mine: approach based on statistical analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1